scholarly journals Energy-Saving D2D Wireless Networking Based on ACO and AIA Fusion Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiatong Li ◽  
Zhibo Li ◽  
Xuanying Li ◽  
Cheng Wang

Lower energy consumption and higher data rate have been becoming the key factors of modern wireless mobile communication for the improvement of user experiences. At present, the commercialization of 5G communications is gradually promoting the development of Internet of things (IoT) techniques. Due to the limited coverage capability of direct wireless communications, the indirect device-to-device (D2D) communications using information relay, in addition to the single 5G base station deployment, have been introduced. Along with the increase of information nodes, the relay devices have to undertake the nonnegligible extra data traffic. In order to adjust and optimize the information routing in D2D services, we present an algorithmic investigation referring to the ant colony optimization (ACO) algorithm and the artificial immune algorithm (AIA). By analyzing the characteristics of these algorithms, we propose a combined algorithm that enables the improved the iterative convergence speed and the calculation robustness of routing path determination. Meanwhile, the D2D optimization pursuing energy saving is numerically demonstrated to be improved than the original algorithms. Based on the simulation results under a typical architecture of 5G cellular network including various information nodes (devices), we show that the algorithmic optimization of D2D routing is potentially valid for the realization of primitive wireless IoT networks.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2013 ◽  
Vol 66 ◽  
pp. 537-544 ◽  
Author(s):  
Feng Zhou ◽  
Jie Chen ◽  
Guoyuan Ma ◽  
Zhongliang Liu

2021 ◽  
Author(s):  
Ali Alnoman

With the growing popularity of smart applications that contain computing-intensive tasks, the provision of radio and computing resources with high quality is becoming more and more challenging. Moreover, supporting network scalability is crucial to accommodate the massive numbers of connected devices. In this thesis, we present effective energy saving strategies that consider the utilization of network elements such as base stations and virtual machines, and implement on/off mechanisms taking into account the quality of service (QoS) required by mobile users. Moreover, we investigate the performance of a NOMA-based resource allocation scheme in the context of Internet of Things aiming to improve network scalability and reduce the energy consumption of mobile users. The system model is mainly built upon the M/M/k queueing system that has been widely used in most relevant works. First, the energy saving mechanism is formulated as a 0-1 knapsack problem where the weight and value of each small base station is determined by the utilization and proportion of computing tasks at that base station, respectively. The problem is then solved using the dynamic programming approach which showed significant energy saving performance while maintaining the cloud response time at desired levels. Afterwards, the energy saving mechanism is applied on edge computing to reduce the amount of under-utilized virtual machines in edge devices. Herein, the square-root staffing rule and the Halfin-Whitt function are used to determine the minimum number of virtual machines required to maintain the queueing probability below a threshold value. On the user level, reducing energy consumption can be achieved by maximizing data rate provision to reduce the task completion time, and hence, the transmission energy. Herein, a NOMA-based scheme is introduced, particularly, the sparse code multiple access (SCMA) technique that allows subcarriers to be shared by multiple users. Not only does SCMA help provide higher data rates but also increase the number of accommodated users. In this context, a power optimization and codebook allocation problems are formulated and solved using the water-filling and heuristic approaches, respectively. Results show that SCMA can significantly improve data rate provision and accommodate more mobile users with improved user satisfaction.


Author(s):  
Muhammad Faheem Mustafa ◽  
Ayaz Ahmad ◽  
Raheel Ahmed

With the rapid increase in data traffic and high data rate demands from cellular users, conventional cellular networks are becoming insufficient to fulfill these requirements. Femto cells are integrated in macro cellular network to increase the capacity, coverage, and to fulfill the increasing demands of the users. Time required for handoff process between the cells became more sensitive and complex with the introduction of femto cells in the network. Public internet which connect the femto base station with the mobile core network induces higher latency if conventional handoff procedures are also employed in macro-femto cell network. So, handoff process will become slower and network operation will become insufficient. Some standards, procedures, and protocols should be defined for macro-femto cell network rather than using existing protocols. This chapter presents a comprehensive survey of handoff process, types of handoff in macro-femto cell network, and proposed methods and schemes for frequent and unnecessary handoff reduction for efficient network operation.


2014 ◽  
Vol 5 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Mei-Chen Chang ◽  
Yao-Ming Chu

This study presented the implementation and development of a knowledge-sharing web-based platform for energy education, called “Energy Magician”. The web-based platform was designed for the students who participating in “Energy Saving and CO2 Reduction Innovation Contest” to share their experience and ideas of energy saving. The researchers applied a web-based survey to explore how the participants with different personal characteristics value the key factors of functional mechanism design, reward system, and knowledge sharing of the platform. The research found that the participants valued differently the various key factors such as the reward system, the platform's functional mechanisms, and sustained knowledge sharing. Participants in different groups with different background, such as prior experience in using the platform, usage duration, and degree of participation, valued the platform's reward system differently, Moreover, participants in different groups ordered the importance of the platform's functional mechanisms in distinct ways. As for the key factor of sustained knowledge sharing, the participants with prior experience in web-based knowledge sharing tended to emphasize the “fostering of the ability in data compilation”; elementary school students tended to emphasize “level titles and privileges” and “cash and prize rewards” while contestants with high degrees of participation tended to emphasize the “joy in knowledge sharing”, “joy in taking part in the contest”, and “level titles and privileges”. When building similar platforms in the future, it is recommended that the design should be differentiated in terms of the reward systems and platform functions and be tailored to the participants' characteristics, so as to maximize their effective use.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Lanhua Xiang ◽  
Hongbin Chen ◽  
Feng Zhao

In order to meet the demand of explosive data traffic, ultradense base station (BS) deployment in heterogeneous networks (HetNets) as a key technique in 5G has been proposed. However, with the increment of BSs, the total energy consumption will also increase. So, the energy efficiency (EE) has become a focal point in ultradense HetNets. In this paper, we take the area spectral efficiency (ASE) into consideration and focus on the tradeoff between the ASE and EE in an ultradense HetNet. The distributions of BSs in the two-tier ultradense HetNet are modeled by two independent Poisson point processes (PPPs) and the expressions of ASE and EE are derived by using the stochastic geometry tool. The tradeoff between the ASE and EE is formulated as a constrained optimization problem in which the EE is maximized under the ASE constraint, through optimizing the BS densities. It is difficult to solve the optimization problem analytically, because the closed-form expressions of ASE and EE are not easily obtained. Therefore, simulations are conducted to find optimal BS densities.


Sign in / Sign up

Export Citation Format

Share Document