scholarly journals Numerical Simulation Analysis of Slope Instability and Failure of Limestone Mine in Weibei

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kuiming Liu ◽  
Hui Li ◽  
Shihui Pang ◽  
Meng Mi ◽  
Jianping Chen ◽  
...  

Weibei area is the largest limestone resource area in Shaanxi Province, which is an important boundary to distinguish the climate difference between the south and the north of China, and also a significant ecological safety protection barrier in the northwest of China. The complex geological environment and harsh environment make the mining area have serious geological disaster hidden danger. Based on the site engineering geological data of typical limestone quarry slope in Weibei, this paper constructs a three-dimensional geological model, uses FLAC3D software to simulate excavation, and analyzes the stress and strain law of the quarry slope. SlopeLE software was used to analyze the safety factor of slope stability and the potential slip surface before and after taking reinforcement measures. The results show the following: (1) Limestone is the main rock component of the mine, followed by mudstone. The joint and fissure are developed, the rock mass is broken, and the hidden danger of engineering geological disaster is high. (2) There is a sliding trend in both sides during excavation, and the maximum vertical displacement is 2.1 cm. (3) If the slope is reinforced according to the design scheme, the slope stability safety factor will be increased from 1.062 to 1.203 in a stable state, which greatly improves the stability of the slope and provides a guarantee for human and financial resources.

2012 ◽  
Vol 446-449 ◽  
pp. 1905-1913
Author(s):  
Mo Wen Xie ◽  
Zeng Fu Wang ◽  
Xiang Yu Liu ◽  
Ning Jia

The Various methods of optimization or random search have been developed for locating the critical slip surface of a slope and the related minimum safety factor in the limit equilibrium stability analysis of slope. But all these methods are based on a two-dimensional (2D) method and no one had been adapted for a search of the three-dimensional (3D) critical slip surface. In this paper, a new Monte Carlo random simulating method has been proposed to identify the 3D critical slip surface, in which assuming the initial slip to be the lower part of an ellipsoid, the 3D critical slip surface in the 3D slope stability analysis is located by minimizing the 3D safety factor of limit equilibrium approach. Based on the column-based three-dimensional limit equilibrium slope stability analysis models, new Geographic Information Systems (GIS) grid-based 3D deterministic limit equilibrium models are developed to calculate the 3D safety factors. Several practical examples, of obtained minimum safety factor and its critical slip surface by a 2D optimization or random technique, are extended to 3D slope problems to locate the 3D critical slip surface and to compare with the 2D results. The results shows that, comparing with the 2D results, the resulting 3D critical slip surface has no apparent difference only from a cross section, but the associated 3D safety factor is definitely higher.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


2015 ◽  
Vol 52 (9) ◽  
pp. 1283-1301 ◽  
Author(s):  
Roohollah Kalatehjari ◽  
Ali Arefnia ◽  
Ahmad Safuan A Rashid ◽  
Nazri Ali ◽  
Mohsen Hajihassani

This paper presents the application of particle swarm optimization (PSO) in three-dimensional (3D) slope stability analysis to determine the shape and direction of failure as the critical slip surface. A detailed description of adopted PSO is presented and a rotating ellipsoidal shape is introduced as the possible failure surface in the analysis. Based on the limit equilibrium method, an equation of factor of safety (FoS) was developed with the ability to calculate the direction of sliding (DoS) in its internal process. A computer code was developed in Matlab to determine the 3D shape of the failure surface and calculate its FoS and DoS. Then, two example problems were used to verify the applicability of the presented code, the first by conducting a comparison between the results of the code and PLAXIS-3D finite element software and the second by re-analyzing an example from the literature to find the 3D failure surface. In addition, a hypothetical 3D asymmetric slope was introduced and analyzed to demonstrate the ability of the presented method to determine the shape and DOS of failure in 3D slope stability problems. Finally, a small-scale physical model of a 3D slope under vertical load was constructed and tested in the laboratory and the results were re-analyzed and compared with the code results. The results demonstrate the efficiency and effectiveness of the presented code in determining the 3D shape of the failure surface in soil slopes.


2011 ◽  
Vol 368-373 ◽  
pp. 1642-1648
Author(s):  
Gui Ling Ding

Three-dimensional finite element analysis should be used in stability analysis of slope because it can overcome the short advantages of two-dimensional finite element and can simulate the complex topographic and geological conditions. Based on the large-scale triaxial shear test, the modified Duncan-Chang model is established. Based on strength reduction elasto-plastic finite element, stability of high fill embankment was studied with three-dimensional finite element method considering the complex terrain conditions. Study results suggest that plastic strain and displacement mutant of slip surface node can be a sign of slope instability as a whole. At the same time calculation of three-dimensional finite element also does not converge. Therefore, it can be slope instability criterion calculate whether the finite element static analysis converges or not. On the other hand, stability safety factor of high fill embankment under three-dimensional conditions is larger than that of two-dimensional conditions, which shows that boundary conditions of high fill embankment enhance its stability.


2014 ◽  
Vol 580-583 ◽  
pp. 729-732
Author(s):  
Ju Sheng Xun ◽  
Xiang Tian Xu ◽  
Rui Qiang Bai

The work condition of the highway, which is usually built in mountainous regions, is complex relative to the ordinary road. Slope instability accident caused by the seepage of rainwater usually occurred in the rainy season. The mechanism for seepage failure of slope was investigated by used the Mohr-Coulomb criterion and the principle of effective stress. The effect of rain intensity on slope stability was equivalently instead by the effect of moisture content on slope stability. The influence of moisture content on the safety factor of slope stability was further calculated according to the Bishop’s method. The degeneration of safety factor follow to the moisture content was presented in the percentage.


2018 ◽  
Vol 232 ◽  
pp. 02053
Author(s):  
Yifeng Cheng ◽  
Qing Li ◽  
Nanying Shentu ◽  
Chao Zhang

With the development of society, the damage of geological disaster to people's life and property is more serious, so the improvement of monitoring means of geological disaster is particularly urgent, there are some shortcomings in traditional monitoring methods, and it is impossible to measure the three-dimensional displacement of underground. The authors have designed an integrated three-dimensional displacement sensor to measure underground horizontal displacement and vertical displacement and tilt angle, and realize the real-time on-line monitoring of underground three-dimensional displacement visually through multi-group structure co-measurement.


2012 ◽  
Vol 548 ◽  
pp. 363-366
Author(s):  
Mao Hu Wang ◽  
Zhen Liang Xu

This article simulates an open pit slope stability using the ANSYS software, which is based on the finite element strength reduction theory, three kinds of slope instability criterion of the strength reduction method are applied to judge whether the slope is on the limit equilibrium state, the incremental search method is used to search the safety factor of the slope stability, and the results show that, the slope body damages when the plastic zone developed from the top to the bottom, in the numerical simulation the finite element iteration calculation didn’t just converge, the corresponding former level of reduction factor is the safety factor, This article can have a guiding significance on the safety production of the open-pit mine.


2018 ◽  
Vol 55 (4) ◽  
pp. 495-513 ◽  
Author(s):  
Qinghui Jiang ◽  
Chuangbing Zhou

Most slope failures exhibit remarkable asymmetrical variation in the transverse direction. A rigorous method satisfying all six equilibrium conditions is proposed for evaluating three-dimensional (3-D) asymmetrical slope stability. As there is no need to predefine a symmetrical plane in this analysis, the method is applicable to slopes with complex geometries, geologies, and loading conditions. The proposed method can not only calculate the factor of safety, but also predict the direction of sliding of the potential failure mass. Global equilibrium equations are formulated in light of the safety factor, sliding direction, and an assumed distribution of normal stress on the slip surface. The Newton method is then used to solve these equations, which has been proven to enjoy both a large range of convergence and a fast convergence rate. Thereafter, physical admissibility conditions of the solutions, and the effects of the size of discretized columns on solution accuracy, are discussed in the present 3-D analysis. The method is validated by using five typical examples documented in the literature. The failure of the Kettleman, California, waste landfill slope is also re-evaluated using the proposed method. The calculated stability and direction of sliding match field observations.


2011 ◽  
Vol 117-119 ◽  
pp. 150-157
Author(s):  
Sheng Chuan Liu

Three-dimensional finite element analysis should be used in stability analysis of slope because it can overcome the short advantages of two-dimensional finite element and can simulate the complex topographic and geological conditions. Based on the large-scale triaxial shear test, the modified Duncan-Chang model is established. Based on strength reduction elasto-plastic finite element, stability of high fill embankment was studied with three-dimensional finite element method considering the complex terrain conditions. Study results suggest that plastic strain and displacement mutant of slip surface node can be a sign of slope instability as a whole. At the same time calculation of three-dimensional finite element also does not converge. Therefore, it can be slope instability criterion calculate whether the finite element static analysis converges or not. On the other hand, stability safety factor of high fill embankment under three-dimensional conditions is larger than that of two-dimensional conditions, which shows that boundary conditions of high fill embankment enhance its stability.


Sign in / Sign up

Export Citation Format

Share Document