scholarly journals Iteratively Coupled Flow and Geomechanics in Fractured Poroelastic Reservoirs: A Phase Field Fracture Model

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinzhou Zhao ◽  
Qing Yin ◽  
John McLennan ◽  
Yongming Li ◽  
Yu Peng ◽  
...  

Fluid-solid coupling in fractured reservoirs plays a critical role for optimizing and managing in energy and geophysical engineering. Computational difficulties associated with sharp fracture models motivate phase field fracture modeling. However, for geomechanical problems, the fully coupled hydromechanical modeling with the phase field framework is still under development. In this work, we propose a fluid-solid fully coupled model, in which discrete fractures are regularized by the phase field. Specifically, this model takes into account the complex coupled interaction of Darcy-Biot-type fluid flow in poroelastic media, Reynolds lubrication governing flow inside fractures, mass exchange between fractures and matrix, and the subsequent geomechanical response of the solid. An iterative coupling method is developed to solve this multifield problem efficiently. We present numerical studies that demonstrate the performance of our model.

2020 ◽  
Vol 579 ◽  
pp. 411894
Author(s):  
Valerio Apicella ◽  
Carmine Stefano Clemente ◽  
Daniele Davino ◽  
Damiano Leone ◽  
Ciro Visone

Author(s):  
Meng Fan ◽  
Yan Jin ◽  
Thomas Wick

AbstractIn this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new model. In total, six models are computationally analyzed and compared.


2021 ◽  
Author(s):  
Song Du ◽  
Seong Lee ◽  
Xian-Huan Wen ◽  
Yalchin Efendiev

Abstract The imbibition process due to capillary force is an important mechanism that controls fluid flow between the two domains, matrix and fracture, in naturally or hydraulically fractured reservoirs. Many simulation studies have been done in the past decades to understand the multi-phase flow in the tight and shale formation. Although significant advances have been made in large-scale modeling for both unconventional and conventional fields, the imbibition processes in the fractured reservoirs remains underestimated in numerical simulation, that limits confidence in long-term field production predictions. In the meanwhile, to simulate the near-fracture imbibition process, traditionally very-fine simulation grids have to be applied so that the physical phenomena of small-length scale could be captured. However, this leads to expensive computation cost to simulate full-field models with a large number of fractures. To improve numerical efficiency in field-scale modeling, we propose a similarity solution for the imbibition process that can be incorporated into the traditional finite difference formulation with coarse grid cells. The semi-analytical similarity solutions are validated by comparing with numerical simulation results with fine-scale grids. The comparison clearly indicates that the proposed algorithm accurately represents the flow behaviors in complex fracture models. Furthermore, we adopt the semi-analytical study to hydraulic fracture models using Embedded Discrete Fracture Model (Lee et al., 2001) in our numerical studies at different scales to represent hydraulic fractures that are interconnected. We demonstrate: 1) the imbibition is critical in determining flow behavior in a capillary force dominant model, 2) conventional EDFM has its limitation in capturing sub-cell flow behaviors near fractures, 3) combining the proposed similarity solution and EDFM, we can accurately represent the multi-phase flow near fractures with coarser grids, and 4) it is straightforward to adapt the similarity solution concept in finite-difference simulations for fractured reservoirs


Sign in / Sign up

Export Citation Format

Share Document