scholarly journals A Virus Propagation Model and Optimal Control Strategy in the Point-to-Group Network to Information Security Investment

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Liping Feng ◽  
Ruifeng Han ◽  
Hongbin Wang ◽  
Qingshan Zhao ◽  
Chengli Fu ◽  
...  

Epidemiological dynamics is a vital method in studying the spread of computer network viruses. In this paper, an optimal control measure is proposed based on the SEIR virus propagation model in point-to-group information networks. First, considering the need for antivirus measures in reality, an optimal control problem is introduced, and then a controlled computer virus spread model in point-to-group information networks is established. Second, the optimal control measure is formulated by making a tradeoff between control cost and network loss caused by virus intrusion. Third, optimal control strategies are theoretically investigated by Pontryagin’s maximum principle and the Hamiltonian function. Finally, through numerical simulations, effective measures for controlling virus spread in point-to-group information networks are proposed.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu ◽  
Chunming Zhang

By incorporating the objective of keeping a low number of infected nodes and a high number of recovered nodes at a lower cost into a known computer virus model (the delay-varying SIRC model) extended by introducing quarantine, a novel model is described by means of the optimal control strategy and theoretically analyzed. Through the comparison of simulation results, it is shown that the propagation of computer virus with varying latency period can be suppressed effectively by the optimal control strategy.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 929
Author(s):  
Guiyun Liu ◽  
Jieyong Chen ◽  
Zhongwei Liang ◽  
Zhimin Peng ◽  
Junqiang Li

With the rapid development of science and technology, the application of wireless sensor networks (WSNs) is more and more widely. It has been widely concerned by scholars. Viruses are one of the main threats to WSNs. In this paper, based on the principle of epidemic dynamics, we build a SEIR propagation model with the mutated virus in WSNs, where E nodes are infectious and cannot be repaired to S nodes or R nodes. Subsequently, the basic reproduction number R0, the local stability and global stability of the system are analyzed. The cost function and Hamiltonian function are constructed by taking the repair ratio of infected nodes and the repair ratio of mutated infected nodes as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively control the spread of the virus and minimize the total cost. The simulation results show that the model has a guiding significance to curb the spread of mutated virus in WSNs.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu ◽  
Jiming Liu

In a recent paper by J. Ren et al. (2012), a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Chunming Zhang ◽  
Xiaofan Yang ◽  
Wanping Liu ◽  
Lu-Xing Yang

By incorporating the chemotherapy into a previous model describing the interaction of the immune system with the human immunodeficiency virus (HIV), this paper proposes a novel HIV virus spread model with control variables. Our goal is to maximize the number of healthy cells and, meanwhile, to minimize the cost of chemotherapy. In this context, the existence of an optimal control is proved. Experimental results show that, under this model, the spread of HIV virus can be controlled effectively.


2021 ◽  
Author(s):  
Xinmiao Rong ◽  
Meng Fan ◽  
Huaiping Zhu ◽  
Yaohui Zheng

Abstract Background: Cystic echinococcosis is one of the most severe helminth zoonosis with a drastic impact on human health and livestock industry. Investigating optimal control strategy and assessing the crucial factors are essential for developing countermeasures to mitigate this disease.Methods: Two compartment models were formulated to study the dynamics of cystic echinococcosis transmission, to evaluate the effectiveness of various control measures, and to find the optimal control strategy. Sensitive analyses were conducted by obtaining PRCCs and contour plot was used to evaluate the effect of key parameters on the basic reproduction number. Based on forward-backward sweep method, numerical simulations were employed to investigate effects of key factors on the transmission of cystic echinococcosis and to obtain the optimal control strategy.Results: The food resources of stray dog and invalid sheep vaccination rate, which are always neglected, were significant to the transmission and control of cystic echinococcosis. Numerical simulations suggest that, the implementation of optimal control strategy can significantly reduce the infections. Improving the cost of health education and domestic dog deworming could not decrease human infections.Conclusions: Our study showed that only a long-term use of the optimal control measures can eliminate the disease. Meanwhile, during the intervention, sheep vaccination and stray dogs disposing should be emphasized ahead of domestic dogs deworming to minimize the control cost. Simultaneously reducing other wild intermediate hosts and strengthening the sheep vaccination as well as disposing the stray dogs would be most effective.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinmiao Rong ◽  
Meng Fan ◽  
Huaiping Zhu ◽  
Yaohui Zheng

Abstract Background Cystic echinococcosis is one of the most severe helminth zoonosis with a drastic impact on human health and livestock industry. Investigating optimal control strategy and assessing the crucial factors are essential for developing countermeasures to mitigate this disease. Methods Two compartment models were formulated to study the dynamics of cystic echinococcosis transmission, to evaluate the effectiveness of various control measures, and to find the optimal control strategy. Sensitive analyses were conducted by obtaining PRCCs and contour plot was used to evaluate the effect of key parameters on the basic reproduction number. Based on forward–backward sweep method, numerical simulations were employed to investigate effects of key factors on the transmission of cystic echinococcosis and to obtain the optimal control strategy. Results The food resources of stray dog and invalid sheep vaccination rate, which are always neglected, were significant to the transmission and control of cystic echinococcosis. Numerical simulations suggest that, the implementation of optimal control strategy can significantly reduce the infections. Improving the cost of health education and domestic dog deworming could not decrease human infections. Conclusions Our study showed that only a long-term use of the optimal control measures can eliminate the disease. Meanwhile, during the intervention, sheep vaccination and stray dogs disposing should be emphasized ahead of domestic dogs deworming to minimize the control cost. Simultaneously reducing other wild intermediate hosts and strengthening the sheep vaccination as well as disposing the stray dogs would be most effective.


2020 ◽  
Author(s):  
Xinmiao Rong ◽  
Meng Fan ◽  
Huaiping Zhu

Abstract Background: Cystic echinococcosis is one of the most severe helminth zoonosis with a drastic impact on human health and livestock industry. Investigating optimal control strategy and assessing the crucial factors are essential for developing countermeasures to mitigate this disease. Methods: Two compartment models were formulated to study the dynamics of cystic echinococcosis transmission, to evaluate the effectiveness of various control measures, and to find the optimal control strategy. Sensitive analyses were conducted by obtaining PRCCs and contour plot were used to evaluate the effect of key parameters on the basic reproduction number. Based on forward-backward sweep method, numerical simulations were employed to investigate effects of key factors on the transmission of cystic echinococcosis and to obtain the optimal control strategy. Results: The food resources of stray dog and invalid sheep vaccination rate, which are always neglected, were significant to the transmission and control of cystic echinococcosis. Numerical simulations suggest that, the implementation of optimal control strategy can significantly reduce the infections. Improving the cost of health education and domestic dog deworming could not decrease human infections. Conclusions: Our study showed that only a long-term use of the optimal control measures can eliminate the disease. Meanwhile, during the intervention, sheep vaccination and stray dogs disposing should be emphasized ahead of domestic dogs deworming to minimize the control cost. Simultaneously reducing other wild intermediate hosts and strengthening the sheep vaccination as well as disposing the stray dogs would be most effective.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1518
Author(s):  
Jose Diamantino Hernández Guillén ◽  
Ángel Martín del Rey ◽  
Roberto Casado Vara

An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.


Sign in / Sign up

Export Citation Format

Share Document