scholarly journals On the Optimal Control of a Malware Propagation Model

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1518
Author(s):  
Jose Diamantino Hernández Guillén ◽  
Ángel Martín del Rey ◽  
Roberto Casado Vara

An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingyi Zhu ◽  
Xuhang Luo ◽  
Yuhang Liu

By incorporating the security awareness of computer users into the susceptible-infected-susceptible (SIS) model, this study proposes a new malware propagation model, named the SID model, where D compartment denotes the group of nodes with user awareness. Through qualitative analysis, the basic reproductive number R 0 is given. Furthermore, it is proved that the virus-free equilibrium is globally asymptotically stable if R 0 is less than one, whereas the viral equilibrium is globally asymptotically stable if R 0 is greater than one. Then, some numerical examples are given to demonstrate the analytical results. Finally, we put forward some efficient control measures according to the theoretical and experimental analysis.


2021 ◽  
Vol 53 (1) ◽  
pp. 134-163
Author(s):  
Temesgen Duressa Keno ◽  
Oluwole Daniel Makinde ◽  
Legesse Lemecha Obsu

In this study, we proposed and analyzed the optimal control and cost-effectiveness strategies for malaria epidemics model with impact of temperature variability. Temperature variability strongly determines the transmission of malaria. Firstly, we proved that all solutions of the model are positive and bounded within a certain set with initial conditions. Using the next-generation matrix method, the basic reproductive number at the present malaria-free equilibrium point was computed. The local stability and global stability of the malaria-free equilibrium were depicted applying the Jacobian matrix and Lyapunov function respectively when the basic reproductive number is smaller than one. However, the positive endemic equilibrium occurs when the basic reproductive number is greater than unity. A sensitivity analysis of the parameters was conducted; the model showed forward and backward bifurcation. Secondly, using Pontryagin’s maximum principle, optimal control interventions for malaria disease reduction are described involving three control measures, namely use of insecticide-treated bed nets, treatment of infected humans using anti-malarial drugs, and indoor residual insecticide spraying. An analysis of cost-effectiveness was also conducted. Finally, based on the simulation of different control strategies, the combination of treatment of infected humans and insecticide spraying was proved to be the most efficient and least costly strategy to eradicate the disease.


2021 ◽  
Vol 7 ◽  
pp. e728
Author(s):  
Xuejin Zhu ◽  
Jie Huang

Due to limited resources, wireless sensor network (WSN) nodes generally possess weak defense capabilities and are often the target of malware attacks. Attackers can capture or infect specific sensor nodes and propagate malware to other sensor nodes in WSNs through node communication. This can eventually infect an entire network system and even cause paralysis. Based on epidemiological theory, the present study proposes a malware propagation model suitable for cluster-based WSNs to analyze the propagation dynamic of malware. The model focuses on the data-transmission characteristics between different nodes in a cluster-based network and considers the actual application parameters of WSNs, such as node communication radius, node distributed density, and node death rate. In addition, an attack and defense game between malware and defending systems is also established, and the infection and recovery rates of malware propagation under the mixed strategy Nash equilibrium condition are given. In particular, the basic reproductive number, equilibrium point, and stability of the model are derived. These studies revealed that a basic reproductive number of less than 1 leads to eventual disappearance of malware, which provides significant insight into the design of defense strategies against malware threats. Numerical experiments were conducted to validate the theory proposed, and the influence of WSN parameters on malware propagation was examined.


2019 ◽  
Vol 40 (4) ◽  
pp. 691-702 ◽  
Author(s):  
João N.C. Gonçalves ◽  
Helena Sofia Rodrigues ◽  
M. Teresa T. Monteiro

2020 ◽  
Vol 17 (5) ◽  
pp. 2125-2129
Author(s):  
G. Maria Jones ◽  
S. Godfrey Winster

The evolution of mobile devices technology has no longer novelty but the usage of the device has been different from persons to persons with variety of purposes. Due to their compatibility in size and portability, the smart devices are prone to attack. Once a single node of the mobile network is attacked, it can compromise the entire network. In this paper, a study of malware attacking behavior is done and used fractional discrete model to analysis the attacking and spreading behavior of possible malware in mobile environment is examined. The mobile malware propagation model is analyzed, and investigated using the stability theory and also proposed a model S (Susceptible state), L (Latent state) and B (Breaking state). Here, basic reproductive number helps to analysis the malware propagation which helps us to find the threshold values. If the reproduction number is less than one, then the malware free equilibrium state is locally asymptotically stable. Endemic equilibrium state is globally asymptotically stable if reproductive number greater than one. Numerical illustrations assure the consistency of the theoretical analysis and interesting dynamical behavior of the system is observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Abdelhadi Abta ◽  
Hassan Laarabi ◽  
Hamad Talibi Alaoui

We propose a delayed SIR model with saturated incidence rate. The delay is incorporated into the model in order to model the latent period. The basic reproductive number R0 is obtained. Furthermore, using time delay as a bifurcation parameter, it is proven that there exists a critical value of delay for the stability of diseases prevalence. When the delay exceeds the critical value, the system loses its stability and a Hopf bifurcation occurs. The model is extended to assess the impact of some control measures, by reformulating the model as an optimal control problem with vaccination and treatment. The existence of the optimal control is also proved. Finally, some numerical simulations are performed to verify the theoretical analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dominic Otoo ◽  
Shaibu Osman ◽  
Stephen Atta Poku ◽  
Elvis Kobina Donkoh

A deterministic model was formulated and employed in the analysis of the dynamics of tuberculosis with a keen emphasis on vaccination and drug resistance as the first line of treatment. It was assumed that some of the susceptible population were vaccinated but with temporal immunity. This is due to the fact that vaccines do not confer permanent immunity. Moreover, part of the infected individual after treatment grows resistance to the drug. Infective immigrants were also considered to be part of the population. The basic reproductive number for the model is estimated using the next-generation matrix method. The equilibrium points of the TB model and their local and global stability were determined. It was established that if the basic reproductive number was less than unity R 0 < 1 , then the disease free equilibrium is stable and unstable if R 0 > 1 . Furthermore, we investigated the optimal prevention, treatment, and vaccination as control measures for the disease. As the objective functional was optimised, there have been a significant reduction in the number of infections and an increase in the number of recovery. The best control measure in combating tuberculosis infections is prevention and vaccination of the susceptible population.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd6370 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Baba Seidu ◽  
Oluwole D. Makinde

A nonlinear dynamical system is proposed and qualitatively analyzed to study the dynamics of HIV/AIDS in the workplace. The disease-free equilibrium point of the model is shown to be locally asymptotically stable if the basic reproductive number,R0, is less than unity and the model is shown to exhibit a unique endemic equilibrium when the basic reproductive number is greater than unity. It is shown that, in the absence of recruitment of infectives, the disease is eradicated whenR0<1, whiles the disease is shown to persist in the presence of recruitment of infected persons. The basic model is extended to include control efforts aimed at reducing infection, irresponsibility, and nonproductivity at the workplace. This leads to an optimal control problem which is qualitatively analyzed using Pontryagin’s Maximum Principle (PMP). Numerical simulation of the resulting optimal control problem is carried out to gain quantitative insights into the implications of the model. The simulation reveals that a multifaceted approach to the fight against the disease is more effective than single control strategies.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Muhammad Ozair ◽  
Abid Ali Lashari ◽  
Il Hyo Jung ◽  
Kazeem Oare Okosun

The paper considers a model for the transmission dynamics of a vector-borne disease with nonlinear incidence rate. It is proved that the global dynamics of the disease are completely determined by the basic reproduction number. In order to assess the effectiveness of disease control measures, the sensitivity analysis of the basic reproductive numberR0and the endemic proportions with respect to epidemiological and demographic parameters are provided. From the results of the sensitivity analysis, the model is modified to assess the impact of three control measures; the preventive control to minimize vector human contacts, the treatment control to the infected human, and the insecticide control to the vector. Analytically the existence of the optimal control is established by the use of an optimal control technique and numerically it is solved by an iterative method. Numerical simulations and optimal analysis of the model show that restricted and proper use of control measures might considerably decrease the number of infected humans in a viable way.


Sign in / Sign up

Export Citation Format

Share Document