scholarly journals Athlete Rehabilitation Evaluation System Based on Internet of Health Things and Human Gait Analysis Algorithm

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Chen Lianzhen ◽  
Zhu Hua

In order to improve the effect of athlete’s injury recognition and rehabilitation evaluation, this paper studies the traditional rehabilitation evaluation method and proposes a new athlete rehabilitation evaluation system combining the Internet of Health Things technology and human gait analysis algorithm. Moreover, this paper combines sports characteristics to improve the algorithm of human gait analysis. In addition, through the study of the athlete’s human body modeling and movement process, a human gait analysis algorithm that can be applied to multiple sports is proposed, and the gait parameter analysis and algorithm reliability research are carried out through simulation analysis. After confirming that the algorithm is effective, this paper combines the Internet of Health Things technology to construct a system model, obtains the system function module architecture with the support of the Internet of Health Things technology, and conducts experiments to verify the system performance. From the experimental research, it can be seen that the model constructed in this paper meets the theoretical and practical needs, and the system in this paper can be applied to practice in the future. The human gait recognition algorithm constructed in this article has a good effect and can play an important role in sports rehabilitation of athletes. At the same time, the system constructed in this article has certain advantages over traditional sports rehabilitation systems with the support of algorithms.

Author(s):  
Ítalo Rodrigues ◽  
Jadiane Dionisio ◽  
Rogério Sales Gonçalves

Author(s):  
Grazia Cicirelli ◽  
Donato Impedovo ◽  
Vincenzo Dentamaro ◽  
Roberto Marani ◽  
Giuseppe Pirlo ◽  
...  

2021 ◽  
Author(s):  
Xinyu Lv ◽  
Shengying Wang ◽  
Tao Chen ◽  
Jing Zhao ◽  
Desheng Chen ◽  
...  

2021 ◽  
Author(s):  
Jiaen Wu ◽  
Henrik Maurenbrecher ◽  
Alessandro Schaer ◽  
Barna Becsek ◽  
Chris Awai Easthope ◽  
...  

<div><div><div><p>Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems.To date, their reliability and limitations in manual labeling of gait events have not been studied.</p><p><b>Objectives</b>: Evaluate human manual labeling uncertainty and introduce a new hybrid gait analysis model for long-term monitoring.</p><p><b>Methods</b>: Evaluate and estimate inter-labeler inconsistencies by computing the limits-of-agreement; develop a model based on dynamic time warping and convolutional neural network to identify a valid stride and eliminate non-stride data in walking inertial data collected by a wearable device; Gait events are detected within a valid stride region afterwards; This method makes the subsequent data computation more efficient and robust.</p><p><b>Results</b>: The limits of inter-labeler agreement for key</p><p>gait events of heel off, toe off, heel strike, and flat foot are 72 ms, 16 ms, 22 ms, and 80 ms, respectively; The hybrid model's classification accuracy for a stride and a non-stride are 95.16% and 84.48%, respectively; The mean absolute error for detected heel off, toe off, heel strike, and flat foot are 24 ms, 5 ms, 9 ms, and 13 ms, respectively.</p><p><b>Conclusions</b>: The results show the inherent label uncertainty and the limits of human gait labeling of motion capture data; The proposed hybrid-model's performance is comparable to that of human labelers and it is a valid model to reliably detect strides in human gait data.</p><p><b>Significance</b>: This work establishes the foundation for fully automated human gait analysis systems with performances comparable to human-labelers.</p></div></div></div>


IEEE ISR 2013 ◽  
2013 ◽  
Author(s):  
Dowan Cha ◽  
Sung Nam Oh ◽  
Daewon Kang ◽  
Kab Il Kim ◽  
Kyung -Soo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document