scholarly journals Experimental Study of Electric Vehicle Yaw Rate Tracking Control Based on Differential Steering

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Cong Li ◽  
Yun-Feng Xie ◽  
Gang Wang ◽  
Su-Qi Liu ◽  
Bing Kuang ◽  
...  

This paper investigates the experimental study of differential steering control of a four-wheel independently driven (FWID) electric vehicle (EV) based on the steer-by-wire (SBW) system. As each wheel of FWID vehicle can be independently driven, differential steering is realized by applying different driven torques to the front-two wheels. Firstly, the principle of the differential steering is analyzed based on the SBW system. When the differential steering is activated, the driver’s steering request is sent to the vehicle’s ECU. Then, the ECU gives different control signals to the front-left and front-right wheels, generating an external steering force on the steering components. The external steering force pushes the steering components to turn corresponding to the driver’s request. Secondly, to test the feasibility of differential steering, a FWID EV is assembled and the vehicle is equipped with four independently driven in-wheel motors. The corresponding control system is designed. Finally, the field test of the vehicle based on the proposed differential steering control strategy is performed. In the experiment, the fixed yaw rate tracking and varied yaw rate tracking maneuvers are employed. In the fixed yaw rate tracking, the vehicle can track the desired yaw rate well with differential steering. In addition, the vehicle can track the varied yaw rate with proposed differential steering. The test results confirm the feasibility and effectiveness of the differential steering. By using the differential steering, a backup steering is established without additional components; thus, the costs can be reduced and the reliability of the vehicle steering system can be enhanced, significantly.

Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


Author(s):  
Yuanyan Chen ◽  
J. Jim Zhu ◽  
Letian Lin

Abstract Conventional automatic trajectory tracking control technics for car-like ground vehicles typically decompose the controller into separate longitudinal driving control and lateral-directional steering control, owing to the nonholonomic kinematic constraint, highly nonlinear dynamics and control under-actuation of such vehicles. However, such decoupled control techniques inevitably impose operational constraints on agile maneuvers that may be critical in evading impending collisions, preventing loss-of-control of the vehicle, and special maneuvers that are needed for law enforcement missions. Thus, integrated three-Degree-of-Freedom (3DOF) tracking control of car-like ground vehicles are highly desirable but remains a challenging problem. There also appears to be a lack of research on automated reverse driving. In our previous work [ASME DSCC2017-5372, DSCC2018-9148], design and hardware validation test results of an integrated 3DOF trajectory tracking controller based on nonlinear kinematics and dynamics vehicle model using Trajectory Linearization Control (TLC) for forward driving have been reported. The present paper supplements that work with design and hardware validation test results on vehicle backward driving at fast and low speeds. The reverse driving control incurs minimal alteration to the original design with minimal tuning efforts due to the model-based TLC control approach, and it should be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with the knowledge of vehicles’ kinematics and dynamics parameters.


2012 ◽  
Vol 41 ◽  
pp. 189-195 ◽  
Author(s):  
M. Nor Rudzuan ◽  
D. Hazry ◽  
W.A.N. Khairunizam ◽  
A.B. Shahriman ◽  
M. Saifizi ◽  
...  

2014 ◽  
Vol 1030-1032 ◽  
pp. 1550-1553 ◽  
Author(s):  
Hao Pan ◽  
Run Sheng Song

Wheel hub motor used in drive system of pure electric vehicle has become hot research and future development. Based on a four-wheel independent drive(4WID) electric vehicles with wheel hub motors, the paper has made the research on electronic differential steering control strategy by using Ackermann steering model conditions, and the experimental results have also been analyzed for the actual steering control effects under differential control strategy.


Robotica ◽  
2001 ◽  
Vol 19 (5) ◽  
pp. 527-533 ◽  
Author(s):  
D. Wu ◽  
Q. Zhang ◽  
J. F. Reid

This paper presents an adaptive steering controller for achieving accurate and prompt steering control with noisy steering command signals and drifting valve characteristics on an automated agricultural tractor with an electrohydraulic steering system. It is difficult to accomplish performance objectives with conventional PID controllers because of the effects of disturbances and unknown factors. The adaptive controller, consisted of an adaptive gain tuner and an adaptive nonlinearity compensator, was to overcome these performance obstacles. Test results indicated that this controller provided an effective means for achieving satisfactory steering control for automated tractor traveling on changing and unpredictable farm field courses.


2013 ◽  
Vol 321-324 ◽  
pp. 1535-1538
Author(s):  
Xiang Fu ◽  
Di Xu ◽  
Yong He

In this paper, firstly, the function of test-bed of motor-wheel-drive Electric Vehicle has been clarified, the frame structures of test-bed has been designed and built. Secondly, control algorithm of motor-wheel-drive Electric Vehicle has been established, including vector control algorithm model, digital PID algorithm model and electronic differential control algorithm model, the control system of test-bed has been designed. Lastly, based on the test bed, the control algorithm of motor-wheel-drive Electric Vehicle has been verified by bench test. The bench test results show that, the control algorithm of motor-wheel-drive Electric Vehicle can achieve straight-ahead control and steering control, which laid the foundation for the future of the real vehicle tests.


1999 ◽  
Author(s):  
Hongchu Qiu ◽  
Qin Zhang ◽  
John F. Reid ◽  
Duqiang Wu

Abstract This paper presents the development of a nonlinear feedforward-plus-Proportional-Integral-Derivative (FPID) controller for electrohydraulic (E/H) steering on wheel-type tractors. An E/H steering system is a typical nonlinear system with deadband, saturation, asymmetric flow gain, time delay, and other nonlinear behaviors. Conventional PID controllers are incapable of achieving accurate steering control effectively on such nonlinear systems. In this research, an FPID controller was developed for effective and accurate steering control. The feedforward loop in this controller was designed to compensate for the deadband of the E/H system. The PID loop was designed to compensate the tracking error in steering control. A coordinated nonlinear gain function was designed to change the PID loop gain based on the level of the tracking error. This FPID controller has significantly improved the steering accuracy comparing with that from a PID controller. Test results showed that the maximum tracking error in steering angle was less than 0.5° corresponding to a sinusoid steering command of ±5° at the command frequency of 0.1 Hz. The maximum overshoot was less than 12% and the rise time was less than 0.25 s corresponding to a steering command of 5° step input. This FPID controller achieved effective and accurate steering control on agricultural tractor E/H steering systems.


Sign in / Sign up

Export Citation Format

Share Document