scholarly journals Chaos-Based Engineering Applications with a 6D Memristive Multistable Hyperchaotic System and a 2D SF-SIMM Hyperchaotic Map

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Fei Yu ◽  
Shuai Qian ◽  
Xi Chen ◽  
Yuanyuan Huang ◽  
Shuo Cai ◽  
...  

In recent years, the research of chaos theory has developed from simple cognition and analysis to practical engineering application. In particular, hyperchaotic systems with more complex and changeable chaotic characteristics are more sensitive and unpredictable, so they are widely used in more fields. In this paper, two important engineering applications based on hyperchaos pseudorandom number generator (PRNG) and image encryption are studied. Firstly, the coupling 6D memristive hyperchaotic system and a 2D SF-SIMM discrete hyperchaotic mapping are used as the double entropy source structure. The double entropy source structure can realize a new PRNG that meets the security requirements, which can pass the NIST statistical test when the XOR postprocessing method is used. Secondly, based on the double entropy source structure, a new image encryption algorithm is proposed. The algorithm uses the diffusion-scrambling-diffusion encryption scheme to realize the conversion from the original plaintext image to the ciphertext image. Finally, we analyze the security of the proposed PRNG and image encryption mechanism, respectively. The results show that the proposed PRNG has good statistical output characteristics and the proposed image encryption scheme has high security, so they can be effectively applied in the field of information security and encryption system.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 510
Author(s):  
Taiyong Li ◽  
Duzhong Zhang

Image security is a hot topic in the era of Internet and big data. Hyperchaotic image encryption, which can effectively prevent unauthorized users from accessing image content, has become more and more popular in the community of image security. In general, such approaches conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity of processed data levels and limiting security. This paper proposes a novel hyperchaotic image encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue. Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive experiments on a couple of public test images to validate the proposed MBPD. The results verify that the MBPD can effectively resist different types of attacks and has better performance than the compared popular encryption methods.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550124 ◽  
Author(s):  
Lequan Min ◽  
Xiuping Yang ◽  
Guanrong Chen ◽  
Danling Wang

This study uses seven four-dimensional four-variable polynomial chaotic maps without equilibria in combination with generalized chaos synchronization (GCS) theorem to construct eight-dimensional bidirectional discrete generalized chaos synchronization (8DBDGCS) systems without equilibria. By combining the 8DBDGCS system with the GCS theorem, a 12-dimensional GCS system is designed. Numerical simulation verifies the chaotic dynamics of the 12-dimensional GCS system, which is used to design a 216-word chaotic pseudorandom number generator (CPRNG). The SP-8002 test suite is used to test the randomness of four 100-key streams consisting of 1 000 000 bits generated respectively by the CPRNG, a six-dimensional GCS-based CPRNG, the RC4 algorithm and the ZUC algorithm. The results show that the randomness performances of the two CPRNGs are promising, suggesting that there are no significant correlations between the key stream and the perturbed key streams generated via the 216-word CPRNG. In addition, theoretically the key space of the CPRNG is larger than 21195. The CPRNG is used with an avalanche-encryption scheme to encrypt an RGB balloon image, demonstrating that the CPRNG is able to generate the avalanche effects which are similar to those generated via ideal 216-word CPRNGs.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Riguang Lin ◽  
Sheng Li

This research proposes a new image encryption scheme based on Lorenz hyperchaotic system and Rivest–Shamir–Adleman (RSA) algorithm. Firstly, the initial values of the Lorenz hyperchaotic system are generated by RSA algorithm, and the key stream is produced iteratively. In order to change the position and gray value of the pixel, the image data are hidden by additive mode diffusion. Secondly, the diffusion image matrix is reshaped into a one-dimensional image matrix, which is confused without repetition to hide the image data again. Then, the finite field diffusion algorithm is executed to realize the third hiding of the image information. In order to diffuse the pixel information into the entire cipher image, the additive mode diffusion algorithm needs to be looped twice. Finally, the cipher image can be obtained. The experimental results prove that the image encryption scheme proposed in this research is effective and has strong antiattack and key sensitivity. Moreover, the security of this encryption scheme relies on the RSA algorithm, which has high security.


Sign in / Sign up

Export Citation Format

Share Document