scholarly journals Formal Modeling, Proving, and Model Checking of a Flood Warning, Monitoring, and Rescue System-of-Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Abdul Rehman ◽  
Nadeem Akhtar ◽  
Omar H. Alhazmi

Floods after monsoon rains are frequent disasters that affect millions of lives in Pakistan. Human lives are lost, agriculture economies are destroyed, and livestock animals, houses, fruit farms, and crops are lost which are the major livelihoods of thousands of people in Punjab. Each year there are heavy rains in the monsoon season and, due to global warming, there is the rapid melting of snow in northern glaciers; these factors subsequently cause floods. There is also loss of life due to the spread of waterborne diseases and snake bites. Flood monitoring provides early detection of a flood and the calculation of its intensity, which results in reduced human life losses and economic losses. Most casualties are caused by the lack of timely real-time, authentic information about the high-risk areas, and flood intensity, speed, and direction. Therefore, the proposed approach is centered on formal modeling and verification of safety and liveness properties of flood monitoring perceivers. Each flood perceiver has several sensors. It requires the collection of information starting from the flood perceiver, observer, and environmental forecast. This information is processed to determine the flood intensity level. We have developed a CP-Nets’ formal model and model-checked it. We have verified the safety and liveness properties of correctness by exhaustive verification of the system using model-based proof obligations (Event-B method using Rodin). Our objective in this research is to propose a correct, reliable, and efficient flood warning, monitoring, and rescue (WMR) SoS based on formal methods. We have used formal modeling and model-checking based on state-of-the-art hierarchical CP-Nets supported by exhaustive formal proof obligations of Event-B.

Author(s):  
Diego Marmsoler

AbstractCollaborative embedded systems form groups in which individual systems collaborate to achieve an overall goal. To this end, new systems may join a group and participating systems can leave the group. Classical techniques for the formal modeling and analysis of distributed systems, however, are mainly based on a static notion of systems and thus are often not well suited for the modeling and analysis of collaborative embedded systems. In this chapter, we propose an alternative approach that allows for the verification of dynamically evolving systems and we demonstrate it in terms of a running example: a simple version of an adaptable and flexible factory.


1997 ◽  
Vol 4 (29) ◽  
Author(s):  
Luca Aceto ◽  
Augusto Burgueno ◽  
Kim G. Larsen

In this paper we develop an approach to model-checking for timed automata via reachability testing. As our specification formalism, we consider a dense-time logic with clocks. This logic may be used to express safety and bounded liveness properties of real-time systems. We show how to automatically synthesize, for every logical formula phi, a so-called test automaton T_phi in such a way that checking whether a system S satisfies the property phi can be reduced to a reachability question over the system obtained by making T_phi interact with S. <br />The testable logic we consider is both of practical and theoretical interest. On the practical side, we have used the logic, and the associated approach to model-checking via reachability testing it supports, in the specification and verification in Uppaal of a collision avoidance protocol. On the theoretical side, we show that the logic is powerful enough to permit the definition of characteristic properties, with respect to a timed version of<br />the ready simulation preorder, for nodes of deterministic, tau-free timed automata. This allows one to compute behavioural relations via our model-checking technique, therefore effectively reducing the problem of checking the existence of a behavioural relation among states of a timed automaton to a reachability problem.


2021 ◽  
Vol 14 (12) ◽  
pp. 55-65
Author(s):  
Anant Patel ◽  
Sanjay Yadav

Most of the natural disasters are unpredictable, but the most frequent occurring catastrophic event over the globe is flood. Developing countries are severely affected by the floods because of the high frequencies of floods. The developing countries do not have good forecasting system compared to the developed country. The metro cities are also settled near the coast or river bank which are the most vulnerable places to floods. This study proposes plan for street level flood monitoring and warning system for the Surat city, India. Waterlogging happens in the low lying area of the Surat city due to heavy storm and heavy releases from the Ukai dam. The high releases from upstream Ukai dam and heavy rainfall resulted into flooding in the low lying area of the Surat city. This research proposed a wireless water level sensor network system for the street water level flood monitoring. The system is proposed to monitor the water levels of different areas of city through the wireless water level sensors as well as to capture live photos using CCTV camera. This will help authority not only to issue flood warning but also to plan flood mitigation measures and evacuation of people.


2005 ◽  
Vol 138 (3) ◽  
pp. 101-115 ◽  
Author(s):  
Ahmed Bouajjani ◽  
Axel Legay ◽  
Pierre Wolper

2018 ◽  
Vol 7 (3.7) ◽  
pp. 58
Author(s):  
Mahanijah Md Kamal ◽  
Aqil Muhammad Sabri

Wireless communication for flood monitoring is developed to observe the status of flooding which could alert people who were in the area when it happens. Flood is a very common problem that Malaysian faced every year caused by the change of climate and also due to urbanization. These floods can cause a lot of damages and can even endanger to human lives. The flooding can be caused by the overflowing of rivers or drains in the affected area. Problems in rural areas near the river bank, not all equipped with flood warning system. Flood warning system is usually found in the main streets with limited warning distance. Therefore, it is necessary to put a wireless communication system that can detect the rising water levels during flooding and also gives warn the local residents especially those who live along the river banks. This system can be used as flood monitoring tool as well as for evacuation during save and rescue operation. The purpose of this paper is to propose a wireless communication based on Arduino system that can help the local residents by detecting the water levels and give an early warning when a flood occurs. Basically, there are two part of the system which are the sensor node and the base station that can generate warning signal during flooding to the affected area. 


Author(s):  
Abdelhakim Baouya ◽  
Salim Chehida ◽  
Saddek Bensalem ◽  
Marius Bozga

Many industrials consider blockchain as a technology breakthrough for cybersecurity, with use cases ranging from cryptocurrency system to smart contracts, and so forth. While IoT systems employ a lightweight communication protocol between physical objects, blockchain may ensure safe information gathering. Unfortunately, the mixture of both technologies has yet to be formally investigated regarding the consensus algorithm. In this paper, statistical model checking is applied to provide quantitative answers on whether the modeled system satisfies safety and liveness properties expressed in LTL temporal logic.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mo Xia ◽  
Kueiming Lo ◽  
Shuangjia Shao ◽  
Mian Sun

Multifunction Vehicle Bus (MVB) is a critical component in the Train Communication Network (TCN), which is widely used in most of the modern train techniques of the transportation system. How to ensure security of MVB has become an important issue. Traditional testing could not ensure the system correctness. The MVB system modeling and verification are concerned in this paper. Petri Net and model checking methods are used to verify the MVB system. A Hierarchy Colored Petri Net (HCPN) approach is presented to model and simulate the Master Transfer protocol of MVB. Synchronous and asynchronous methods are proposed to describe the entities and communication environment. Automata model of the Master Transfer protocol is designed. Based on our model checking platform M3C, the Master Transfer protocol of the MVB is verified and some system logic critical errors are found. Experimental results show the efficiency of our methods.


Sign in / Sign up

Export Citation Format

Share Document