Street Level Flood Monitoring and Warning System, a conceptual model using IoT: A Case of Surat City

2021 ◽  
Vol 14 (12) ◽  
pp. 55-65
Author(s):  
Anant Patel ◽  
Sanjay Yadav

Most of the natural disasters are unpredictable, but the most frequent occurring catastrophic event over the globe is flood. Developing countries are severely affected by the floods because of the high frequencies of floods. The developing countries do not have good forecasting system compared to the developed country. The metro cities are also settled near the coast or river bank which are the most vulnerable places to floods. This study proposes plan for street level flood monitoring and warning system for the Surat city, India. Waterlogging happens in the low lying area of the Surat city due to heavy storm and heavy releases from the Ukai dam. The high releases from upstream Ukai dam and heavy rainfall resulted into flooding in the low lying area of the Surat city. This research proposed a wireless water level sensor network system for the street water level flood monitoring. The system is proposed to monitor the water levels of different areas of city through the wireless water level sensors as well as to capture live photos using CCTV camera. This will help authority not only to issue flood warning but also to plan flood mitigation measures and evacuation of people.

2018 ◽  
Vol 7 (3.7) ◽  
pp. 58
Author(s):  
Mahanijah Md Kamal ◽  
Aqil Muhammad Sabri

Wireless communication for flood monitoring is developed to observe the status of flooding which could alert people who were in the area when it happens. Flood is a very common problem that Malaysian faced every year caused by the change of climate and also due to urbanization. These floods can cause a lot of damages and can even endanger to human lives. The flooding can be caused by the overflowing of rivers or drains in the affected area. Problems in rural areas near the river bank, not all equipped with flood warning system. Flood warning system is usually found in the main streets with limited warning distance. Therefore, it is necessary to put a wireless communication system that can detect the rising water levels during flooding and also gives warn the local residents especially those who live along the river banks. This system can be used as flood monitoring tool as well as for evacuation during save and rescue operation. The purpose of this paper is to propose a wireless communication based on Arduino system that can help the local residents by detecting the water levels and give an early warning when a flood occurs. Basically, there are two part of the system which are the sensor node and the base station that can generate warning signal during flooding to the affected area. 


2018 ◽  
Vol 197 ◽  
pp. 16003
Author(s):  
Aris Haris Rismayana ◽  
Castaka Agus Sugianto ◽  
Ida Bagus Budiyanto

When the rainy season arrives, flooding is a common phenomenon. Almost every street, housing, village, river, even in the city center, wherever floods can occur. One effort to prevent the flooding is to create a floodgate on reservoirs or dams that are used to control the water distribution. The water level at this dam must be checked frequently to anticipate if the water level is at a dangerous level. The inspection of water levels will be very difficult if it must be conducted by humans who must be available in the field at any time. This research aims to create a prototype system that can replace the human role in monitoring the dam water level condition at any time by developing an integrated system between hardware and software using IoT (Internet of Things) technology approach and social media (twitter and telegram). The developed system consists of the height sensor (distance), microcontroller and wifi module, which is placed on the water gate. This system serves to measure the water level at any time and send data in real time to the server. The results of system testing performed shows that when the system is in normal circumstances, the system sends data to the server every minute, and updates the status of water level in twitter every 5 minutes. In case the water level has exceeded a predetermined limit, the system sends data to the server every 5 seconds and passes the warning message to all registered telegram contacts.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 825 ◽  
Author(s):  
Shih-Yen Hsu ◽  
Tai-Been Chen ◽  
Wei-Chang Du ◽  
Jyh-Horng Wu ◽  
Shih-Chieh Chen

With the increase of extreme weather events, the frequency and severity of urban flood events in the world are increasing drastically. Therefore, this study develops ARMT (automatic combined ground weather radar and CCTV (Closed Circuit Television System) images for real-time flood monitoring), which integrates real-time ground radar echo images and automatically estimates a rainfall hotspot according to the cloud intensity. Furthermore, ARMT combines CCTV image capturing, analysis, and Fourier processing, identification, water level estimation, and data transmission to provide real-time warning information. Furthermore, the hydrograph data can serve as references for relevant disaster prevention, and response personnel may take advantage of them and make judgements based on them. The ARMT was tested through historical data input, which showed its reliability to be between 83% to 92%. In addition, when applied to real-time monitoring and analysis (e.g., typhoon), it had a reliability of 79% to 93%. With the technology providing information about both images and quantified water levels in flood monitoring, decision makers can quickly better understand the on-site situation so as to make an evacuation decision before the flood disaster occurs as well as discuss appropriate mitigation measures after the disaster to reduce the adverse effects that flooding poses on urban areas.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1484 ◽  
Author(s):  
Jinyan Sun ◽  
Lei Ding ◽  
Jiaze Li ◽  
Haiming Qian ◽  
Mengting Huang ◽  
...  

The spatial extent and area of river islands are always changing due to the impact of hydrodynamic conditions, sediment supply and human activities. A catastrophic flood disaster was driven by sustained and heavy rainfall around the middle and lower Yangtze River in 18 June to 21 July 2016. The flood resulted in the most serious social-economic loss since 1954 and caused a larger-scale inundation for a short time. It is essential to continuously monitor the dynamics changes of river islands because this can avoid frequent field measurements in river islands before and after flood disasters, which are helpful for flood warning. This paper focuses on the temporal change of three river islands called Fenghuangzhou, Changshazhou, and one uninhabited island in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV (wide field view) data was used for our study owing to its fine spatial and temporal resolution. A simple NDWI (Normalized Difference Water Index) method was used for the river island mapping. Human checking was then performed to ensure mapping accuracy. We estimated the relationship between the area of river islands and measured water levels using four models. Furthermore, we mapped the spatial pattern of inundation risk of river islands. The results indicate a good ability of the GF-1 WFV data with a 16-m spatial resolution to characterize the variation of river islands and to study the association between flood disaster and river islands. A significantly negative but nonlinear relationship between the water level and the area of the river island was observed. We also found that the cubic function fits best among three models (R2 > 0.8, P < 0.001). The maximum of the inundated area at the river island appeared in the rainy season on 8 July 2016 and the minimum occurred in the dry season on 28 December 2016, which is consistent with the water level measured by the hydrological station. Our results derived from GF-1 data can provide a useful reference for decision-making of flood warning, disaster assessment, and post-disaster reconstruction.


ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 113
Author(s):  
Hasbi Nur Prasetyo Wisudawan

Disaster occurrence in Indonesia needs attention and role from all parties including the community to reduce the risks.  Disaster mitigation is one of the ways to reduce the disaster risk through awareness, capacity building, and the development of physical facilities, for example by applying disaster mitigation technology (early warning system, EWS). EWS is one of the effective methods to minimize losses due to disasters by providing warning based on certain parameters for disasters which usually occur such as floods. This research promotes a real-time IoT-based EWS flood warning system (Flood Early Warning System, FEWS) using Arduino and Blynk as well as Global System for Mobile Communication network (GSM) as the communication medium. The steps for implementing FEWS system in real locations are also discussed in this paper. Parameters such as water level, temperature, and humidity as well as rain conditions that are read by the EWS sensor can be accessed in real-time by using android based Blynk application that has been created. The result of the measurement of average temperature, humidity, and water level were 28.6 oC, 63.7 %, and 54.5 cm. Based on this analysis, the parameters indicated that the water level is in normal condition and there are no signs indicating that there will be flooding in the 30 days observation.  Based on the data collected by the sensor, FEWS can report four conditions, namely Normal, Waspada Banjir (Advisory), Siaga Banjir (Watch), and Awas Banjir (Warning) that will be sent immediately to the Blynk FEWS application user that has been created.


Author(s):  
Nova Ahmed ◽  
Md. Sirajul Islam ◽  
Sifat Kalam ◽  
Farzana Islam ◽  
Nabila Chowdhury ◽  
...  

Background: The North-Eastern part of Bangladesh is suffering from flash flood very frequently, causing colossal damage to life and properties, especially the vast croplands. A distributed sensing system can monitor the water level on a continuous basis to warn people near the riverbank beforehand and reduce the damage largely. However, the required communication infrastructure is not available in most of the remote rural areas in a developing country like Bangladesh. Objective: This study intends to develop a low-cost sensor based warning system, customizing to the Bangladesh context. Method: The system utilizes a low-cost ultrasound based sensor device, a lightweight mobile phone based server, low-cost IoT sensing nodes, and a central server for continuous monitoring of river stage data along with the provision of storage and long-term data analytics. Results: A flash flood warning system developed afterward with the sensors, mobile-based server, and appropriate webbased interfaces. The device was tested for some environmental conditions in the lab and deployed it later in the outdoor conditions for short-term periods. Conclusion: Overall, the warning system performed well in the lab as well as the outdoor environment, with the ability to detect water level at reasonable accuracy and transmit data to the server in real time. Some minor shortcomings still noted with the scope for improvements, which are in the way to improve further.


2018 ◽  
Vol 246 ◽  
pp. 01072
Author(s):  
Zhao Keke ◽  
Peng Dingzhi ◽  
Gu Yu ◽  
Fan Chuting

The article discusses from the disaster mechanism of flash flood to the current situation of early warning system. The formation of flash flood is closely related to rainfall intensity, underlying surface conditions and antecedent soil moisture content, and analysis of the physical process of flash flood disasters is crucial for the study of flash flood warning. Flash flood disaster warning indexes are mainly divided into two types: rainfall warning index and water level warning index. Data-driven statistical induction method and hydro-hydraulic methods based on physical mechanisms are used to determine rainfall warning index; The water level warning index can be directly determined by the upstream and downstream corresponding water level method or by the disaster water level. And summed up the current situation and development trend of China's flash flood warning research.


2020 ◽  
Vol 104 (1) ◽  
pp. 493-517 ◽  
Author(s):  
Julia W. Fiedler ◽  
Adam P. Young ◽  
Bonnie C. Ludka ◽  
William C. O’Reilly ◽  
Cassandra Henderson ◽  
...  

Abstract Storm wave run-up causes beach erosion, wave overtopping, and street flooding. Extreme runup estimates may be improved, relative to predictions from general empirical formulae with default parameter values, by using historical storm waves and eroded profiles in numerical runup simulations. A climatology of storm wave run-up at Imperial Beach, California is developed using the numerical model SWASH, and over a decade of hindcast spectral waves and observed depth profiles. For use in a local flood warning system, the relationship between incident wave energy spectra E(f) and SWASH-modeled shoreline water levels is approximated with the numerically simple integrated power law approximation (IPA). Broad and multi-peaked E(f) are accommodated by characterizing wave forcing with frequency-weighted integrals of E(f). This integral approach improves runup estimates compared to the more commonly used bulk parameterization using deep water wave height $$H_0$$ H 0 and deep water wavelength $$L_0$$ L 0 Hunt (Trans Am Soc Civ Eng 126(4):542–570, 1961) and Stockdon et al. (Coast Eng 53(7):573–588, 2006. 10.1016/j.coastaleng.2005.12.005). Scaling of energy and frequency contributions in IPA, determined by searching parameter space for the best fit to SWASH, show an $$H_0L_0$$ H 0 L 0 scaling is near optimal. IPA performance is tested with LiDAR observations of storm run-up, which reached 2.5 m above the offshore water level, overtopped backshore riprap, and eroded the foreshore beach slope. Driven with estimates from a regional wave model and observed $$\beta _f$$ β f , the IPA reproduced observed run-up with $$<30\%$$ < 30 % error. However, errors in model physics, depth profile, and incoming wave predictions partially cancelled. IPA (or alternative empirical forms) can be calibrated (using SWASH or similar) for sites where historical waves and eroded bathymetry are available.


2021 ◽  
Vol 1 ◽  
pp. 45-49
Author(s):  
Latiful Hayat ◽  
Dian Nova Kusuma Hardani

Floods and their problems show an increasing indication when rainfall is high. Data from BNPB shows that floods, landslides and tornadoes contributed to the total disasters in Indonesia in a decade. The existence of an early warning flood disaster can help evacuate before a disaster strikes. The system requires a water level detector as the basic data for determining flood predictions. In order to get the water level value, a touch water method can be used using electrodes or without touching the water with the help of pressure sensors, ultrasonic and imaging. Each method has advantages over the other. In this study, the effectivity and accuracy of detecting water levels were investigated using 3 methods: the direct touch of water through nickel wire, buoys with encoder, and pressure sensors. Detection of water levels can be used as a reference to obtain river water level data which is then connected via an IoT or internet connection as a reference for the Early Warning System for the arrival of floods. This study found that changes in water level of less than 30 cm can utilize buoys and encoders with an accuracy of detecting 5 to 6 counts per 1 mm increase in water level. Meanwhile, the measurement of less than 30 cm water level using nickel wire resulted in a non-linear value. The utilization of nickel wire can be used for a height of more than 30 cm where the change in resistivity has started to be linear. ADC change value is 2.93 mV/cm using 10 bit ADC at 5 Volt reference voltage. For water level heights of 50 cm and above, a pressure sensor can use a pressure sensor that can detect changes in pressure of 0.002 in Hg/mm or 0.05 mmHg/mm.


The objectives of this research were to design and develop an automatic water level warning system for communities living along Khlong Lad Phrao (Lad Phrao Canal) in Bangkok. The development of the system was divided into the following four main parts: 1) a water level measurement system; 2) a precipitation measurement system; 3) a water quality testing system covering dissolved oxygen, pH, turbidity and electrical conductivity and 4) an internet alert system utilizing the LINE application and web-based application information display. The first three parts were to be solar-powered. The design and development effort showed that the system successfully measured water levels along with water quality with speed and precision. Moreover, the system was easy to measure results and was able to alert through the LINE application when water in Khlong Lad Phrao approached critical levels, thereby reducing damage from water levels. Precision testing of the developed water level and quality measurement systems found that precision was in the range of 99.74-99.77%.


Sign in / Sign up

Export Citation Format

Share Document