scholarly journals A Feature Weighted Fuzzy Clustering Algorithm Based on Multistrategy Grey Wolf Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yongli Liu ◽  
Zhonghui Wang ◽  
Hao Chao

Traditional fuzzy clustering is sensitive to initialization and ignores the importance difference between features, so the performance is not satisfactory. In order to improve clustering robustness and accuracy, in this paper, a feature-weighted fuzzy clustering algorithm based on multistrategy grey wolf optimization is proposed. This algorithm cannot only improve clustering accuracy by considering the different importance of features and assigning each feature different weight but also can easily obtain the global optimal solution and avoid the impact of the initialization process by implementing multistrategy grey wolf optimization. This multistrategy optimization includes three components, a population diversity initialization strategy, a nonlinear adjustment strategy of the convergence factor, and a generalized opposition-based learning strategy. They can enhance the population diversity, better balance exploration and exploitation, and further enhance the global search capability, respectively. In order to evaluate the clustering performance of our clustering algorithm, UCI datasets are selected for experiments. Experimental results show that this algorithm can achieve higher accuracy and stronger robustness.

Author(s):  
Sen Zhang ◽  
Qifang Luo ◽  
Yongquan Zhou

To overcome the poor population diversity and slow convergence rate of grey wolf optimizer (GWO), this paper introduces the elite opposition-based learning strategy and simplex method into GWO, and proposes a hybrid grey optimizer using elite opposition (EOGWO). The diversity of grey wolf population is increased and exploration ability is improved. The experiment results of 13 standard benchmark functions indicate that the proposed algorithm has strong global and local search ability, quick convergence rate and high accuracy. EOGWO is also effective and feasible in both low-dimensional and high-dimensional case. Compared to particle swarm optimization with chaotic search (CLSPSO), gravitational search algorithm (GSA), flower pollination algorithm (FPA), cuckoo search (CS) and bat algorithm (BA), the proposed algorithm shows a better optimization performance and robustness.


2010 ◽  
Vol 44-47 ◽  
pp. 4067-4071 ◽  
Author(s):  
Xue Yong Li ◽  
Jia Xia Sun ◽  
Jun Hui Fu ◽  
Guo Hong Gao

A fuzzy clustering algorithm based on improved particle swarm optimization was proposed in this paper. First reduce dimension of solution space, separate it into smaller solution space. In separated solution space, use of improved particle swarm optimization algorithm to search the sub-optimal solution as a chromosome of whole particle,use improved PSO to search global optimal solution. The particle solve the problem that swarm algorithm easy to fall into local optimal solution in high dimensional space, and the problem that the fuzzy clustering algorithm is sensitive to initial value problems. Simulation results show the effectiveness of this algorithm.


2019 ◽  
Vol 19 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Bote Lv ◽  
Juan Chen ◽  
Boyan Liu ◽  
Cuiying Dong

<P>Introduction: It is well-known that the biogeography-based optimization (BBO) algorithm lacks searching power in some circumstances. </P><P> Material & Methods: In order to address this issue, an adaptive opposition-based biogeography-based optimization algorithm (AO-BBO) is proposed. Based on the BBO algorithm and opposite learning strategy, this algorithm chooses different opposite learning probabilities for each individual according to the habitat suitability index (HSI), so as to avoid elite individuals from returning to local optimal solution. Meanwhile, the proposed method is tested in 9 benchmark functions respectively. </P><P> Result: The results show that the improved AO-BBO algorithm can improve the population diversity better and enhance the search ability of the global optimal solution. The global exploration capability, convergence rate and convergence accuracy have been significantly improved. Eventually, the algorithm is applied to the parameter optimization of soft-sensing model in plant medicine extraction rate. Conclusion: The simulation results show that the model obtained by this method has higher prediction accuracy and generalization ability.</P>


1989 ◽  
Vol 54 (10) ◽  
pp. 2692-2710 ◽  
Author(s):  
František Babinec ◽  
Mirko Dohnal

The problem of transformation of data on the reliability of chemical equipment obtained in particular conditions to other equipment in other conditions is treated. A fuzzy clustering algorithm is defined for this problem. The method is illustrated on a case study.


2021 ◽  
pp. 1-14
Author(s):  
Yujia Qu ◽  
Yuanjun Wang

BACKGROUND: The corpus callosum in the midsagittal plane plays a crucial role in the early diagnosis of diseases. When the anisotropy of the diffusion tensor in the midsagittal plane is calculated, the anisotropy of corpus callosum is close to that of the fornix, which leads to blurred boundary of the segmentation region. OBJECTIVE: To apply a fuzzy clustering algorithm combined with new spatial information to achieve accurate segmentation of the corpus callosum in the midsagittal plane in diffusion tensor images. METHODS: In this algorithm, a fixed region of interest is selected from the midsagittal plane, and the anisotropic filtering algorithm based on tensor is implemented by replacing the gradient direction of the structural tensor with an eigenvector, thus filtering the diffusion tensor of region of interest. Then, the iterative clustering center based on K-means clustering is used as the initial clustering center of tensor fuzzy clustering algorithm. Taking filtered diffusion tensor as input data and different metrics as similarity measures, the neighborhood diffusion tensor pixel calculation method of Log Euclidean framework is introduced in the membership function calculation, and tensor fuzzy clustering algorithm is proposed. In this study, MGH35 data from the Human Connectome Project (HCP) are tested and the variance, accuracy and specificity of the experimental results are discussed. RESULTS: Segmentation results of three groups of subjects in MGH35 data are reported. The average segmentation accuracy is 97.34%, and the average specificity is 98.43%. CONCLUSIONS: When segmenting the corpus callosum of diffusion tensor imaging, our method cannot only effective denoise images, but also achieve high accuracy and specificity.


Sign in / Sign up

Export Citation Format

Share Document