scholarly journals Diverse Dynamic Behaviors and Firing Activities of the Modified Fractional-Order Hindmarsh–Rose Neuronal Model Induced by Fractional-Order

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Yang ◽  
GuangJun Zhang ◽  
XueRen Li ◽  
Dong Wang

It is important to investigate the firing activities of neurons, and previous experimental works have shown that fractional-order neuronal models depict the firing rate of neurons more verifiably. In this study, a modified fractional-order Hindmarsh–Rose neuronal model is proposed, and the dynamics and firing activities are investigated. Some novel phenomenon can be found. First, by analyzing numerically and theoretically, the Hopf bifurcation is found to occur when the external direct current stimulus is chosen appropriately. The effects of fractional-order on the bifurcation are also studied. Second, when injecting a direct current stimulus, compared with the integer-order model, the system has more varying dynamic behaviors and firing pattern transitions. Under different external current stimulus, periodic firing patterns and chaotic firing patterns occur when fractional-order changes, but the regions of chaotic firing patterns are different. In other words, the transition mode of periodic firing and chaotic firing induced by fractional-order is different under different external current stimulus. The two-dimensional colored diagram of firing patterns is also investigated. Finally, when injecting periodic current stimulus, regular/irregular bursting, multiple spiking, regular\irregular square wave bursting, and mixed firing mods are found by setting the appropriate fractional-order, amplitude, and frequency of the external current stimulus. Some firing patterns cannot be found in integer-order models. When the amplitude is chosen at appropriate values, the region of frequency when the system displays the mixed firing modes decreases with increasing fractional-order.

2013 ◽  
Vol 380-384 ◽  
pp. 1792-1795
Author(s):  
Feng Chen ◽  
Long Sheng ◽  
Jian Zhang ◽  
Xiao Bin Huang

The dynamic behaviors of fractional-order systems have attracted increasing attentions recently. In this paper, a fractional-order four-wing hyper-chaotic system which has a rich variety of dynamic behaviors is proposed. We numerically study the dynamic behaviors of this fractional-order system with different conditions. Hyper-chaotic behaviors can be found in this system when the order is lower than 3 and four-wing hyper-chaotic attractors similar to integer order system can be generated. The lowest order for Hyper-chaos to exist in this system is 3.6 and the lowest order for chaos to exist in this system is 2.4.


10.6036/10125 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 322-328
Author(s):  
JIANCHAO ZHANG ◽  
Zhan Chen ◽  
Jun Wang ◽  
Yufei Hu

Vehicle suspension systems generally have non-smooth factors, such as clearances, collision, and constraint. The bad dynamic behaviors caused by these non-smooth factors have not been controlled effectively, thus influencing the driving performance and riding comfort of vehicles. To explore the dynamic characteristics of non-smooth suspension systems for controlling the bad dynamic behaviors, an approximate analytical solution to the response of a two-degree of freedom nonlinear suspension system, which has a fractional-order displacement feedback under harmonic excitation, was deduced by the Krylov–Bogoliubov (KB) method. This analytical solution was verified by the numerical solution of the suspension system. Moreover, the response of the suspension system with fractional-order displacement feedback control was compared with those of the systems without feedback control and traditional integer-order control. The influences of the main parameters of the system on the dynamic suspension characteristics were analyzed thoroughly. Finally, the stability of the suspension system was analyzed by plotting the maximum Lyapunov index diagram. Results show that compared with the systems without feedback control and with traditional integer-order control, the nonlinear suspension system with fractional-order displacement feedback control can significantly improve vehicle acceleration, the dynamic deflection of the suspension, and the displacement of the vehicle body. Controlling the nonlinear stiffness coefficient of the suspension system within 103–106 is conducive to decreasing the dynamic deflection of the suspension system of vehicles, while increasing the fractional-order control coefficient and the fractional order is beneficial to controlling the dynamic deflection of the suspension system and the displacement of the vehicle body. Conclusions obtained in the study can provide unique references for the optimal design and control of nonlinear suspension systems with fractional-order displacement feedback control. Keywords: suspension; non-smooth; fractional order; dynamics; analytical solution; nonlinear.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1544
Author(s):  
Chunpeng Wang ◽  
Hongling Gao ◽  
Meihong Yang ◽  
Jian Li ◽  
Bin Ma ◽  
...  

Continuous orthogonal moments, for which continuous functions are used as kernel functions, are invariant to rotation and scaling, and they have been greatly developed over the recent years. Among continuous orthogonal moments, polar harmonic Fourier moments (PHFMs) have superior performance and strong image description ability. In order to improve the performance of PHFMs in noise resistance and image reconstruction, PHFMs, which can only take integer numbers, are extended to fractional-order polar harmonic Fourier moments (FrPHFMs) in this paper. Firstly, the radial polynomials of integer-order PHFMs are modified to obtain fractional-order radial polynomials, and FrPHFMs are constructed based on the fractional-order radial polynomials; subsequently, the strong reconstruction ability, orthogonality, and geometric invariance of the proposed FrPHFMs are proven; and, finally, the performance of the proposed FrPHFMs is compared with that of integer-order PHFMs, fractional-order radial harmonic Fourier moments (FrRHFMs), fractional-order polar harmonic transforms (FrPHTs), and fractional-order Zernike moments (FrZMs). The experimental results show that the FrPHFMs constructed in this paper are superior to integer-order PHFMs and other fractional-order continuous orthogonal moments in terms of performance in image reconstruction and object recognition, as well as that the proposed FrPHFMs have strong image description ability and good stability.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2009 ◽  
Author(s):  
Bijoy K. Mukherjee ◽  
Santanu Metia ◽  
Sio-Iong Ao ◽  
Alan Hoi-Shou Chan ◽  
Hideki Katagiri ◽  
...  

2016 ◽  
Vol 40 (1) ◽  
pp. 331-340 ◽  
Author(s):  
Samia Talmoudi ◽  
Moufida Lahmari

Currently, fractional-order systems are attracting the attention of many researchers because they present a better representation of many physical systems in several areas, compared with integer-order models. This article contains two main contributions. In the first one, we suggest a new approach to fractional-order systems modelling. This model is represented by an explicit transfer function based on the multi-model approach. In the second contribution, a new method of computation of the validity of library models, according to the frequency [Formula: see text], is exposed. Finally, a global model is obtained by fusion of library models weighted by their respective validities. Illustrative examples are presented to show the advantages and the quality of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document