scholarly journals Chromatin Regulation in Development: Current Understanding and Approaches

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zi Hao Zheng ◽  
Tsz Wing Sam ◽  
YingYing Zeng ◽  
Justin Jang Hann Chu ◽  
Yuin-Han Loh

The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.

2009 ◽  
Vol 15 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Amanda W. Lund ◽  
Bülent Yener ◽  
Jan P. Stegemann ◽  
George E. Plopper

Blood ◽  
2021 ◽  
Author(s):  
Dirk Loeffler ◽  
Florin Schneiter ◽  
Weijia Wang ◽  
Arne Wehling ◽  
Tobias Kull ◽  
...  

Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Pengfei Ji ◽  
Xia Wang ◽  
Nina Xie ◽  
Yujing Li

Vast emerging evidences are linking the base modifications and determination of stem cell fate such as proliferation and differentiation. Among the base modification markers extensively studied, 5-methylcytosine (5-mC) and its oxidative derivatives (5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC)) dynamically occur in DNA and RNA and have been acknowledged as important epigenetic markers involved in regulation of cellular biological processes. N6-Methyladenosine modification in DNA (m6dA), mRNA (m6A), tRNA, and other noncoding RNAs has been defined as another important epigenetic and epitranscriptomic marker in eukaryotes in recent years. The mRNA m6A modification has been characterized biochemically, molecularly, and phenotypically, including elucidation of its methyltransferase complexes (m6A writer), demethylases (m6A eraser), and direct interaction proteins (readers), while limited information on the DNA m6dA is available. The levels and the landscapes of m6A in the epitranscriptomes and epigenomes are precisely and dynamically regulated by the fine-tuned coordination of the writers and erasers in accordance with stages of the growth, development, and reproduction as naturally programmed during the lifespan. Additionally, progress has been made in appreciation of the link between aberrant m6A modification in stem cells and diseases, like cancers and neurodegenerative disorders. These achievements are inspiring scientists to further uncover the epigenetic mechanisms for stem cell development and to dissect pathogenesis of the multiple diseases conferred by development aberration of the stem cells. This review article will highlight the research advances in the role of m6A methylation modifications of DNA and RNA in the regulation of stem cell and genesis of the closely related disorders. Additionally, this article will also address the research directions in the future.


2014 ◽  
Vol 19 (3) ◽  
pp. 239-253 ◽  
Author(s):  
Shohei Murakami ◽  
Ritsuko Shimizu ◽  
Paul-Henri Romeo ◽  
Masayuki Yamamoto ◽  
Hozumi Motohashi

Nature ◽  
2002 ◽  
Vol 416 (6883) ◽  
pp. 854-860 ◽  
Author(s):  
Emi K. Nishimura ◽  
Siobhán A. Jordan ◽  
Hideo Oshima ◽  
Hisahiro Yoshida ◽  
Masatake Osawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document