scholarly journals Signal Propagation Models in Soil Medium for the Study of Wireless Underground Sensor Networks: A Review of Current Trends

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Frank Kataka Banaseka ◽  
Ferdinand Katsriku ◽  
Jamal Deen Abdulai ◽  
Kofi Sarpong Adu-Manu ◽  
Felicia Nana Ama Engmann

Radio signal propagation modeling plays an important role in the design of wireless communication systems. Various models have been developed, over the past few decades, to predict signal propagation and behavior for wireless communication systems in different operating environments. Recently, there has been an interest in the deployment of wireless sensors in soil. To fully exploit the capabilities of sensor networks deployed in soil requires an understanding of the propagation characteristics within this environment. This paper reviews the cutting-edge developments of signal propagation in the subterranean environment. The most important modeling techniques for modeling include electromagnetic waves, propagation loss, magnetic induction, and acoustic wave. These are discussed vis-a-vis modeling complexity and key parameters of the environment including electric and magnetic properties of soil. An equation to model propagation in the soil is derived from the free space model. Results are presented to show propagation losses and at different frequencies and volumetric water content. The channel capacity and the operating frequency are also analyzed against soil moisture at different soil types and antenna sizes.

2021 ◽  
Author(s):  
Carlos Molero ◽  
Ángel Palomares-Caballero ◽  
Antonio Alex-Amor ◽  
Ignacio Parellada-Serrano ◽  
Francisco Gamiz ◽  
...  

The upcoming high-speed wireless communication systems will be hosted by millimeter and sub-millimeter-wave frequency bands. At these frequencies, electromagnetic waves suffer from severe propagation losses and non-line-of-sight (NLOS) scenarios. A new wireless communication paradigm has arrived to resolve this situation through the use of reconfigurable intelligent surfaces (RIS). These metadevices are designed to reconfigure the wireless environment in a smart way. Traditional RIS designs based on the implementation of 2-D configurations have been considered up to now. However, 3-D structures enable an extra degree of freedom in the design that can be taken as an advantage for the development of improved RIS structures with advanced functionalities. This article proposes the implementation of a novel electronically-reconfigurable RIS based on the use of 3-D graphene meta-atoms. The reconfigurability lies on the graphene conductivity, easily tunable with a biasing voltage. Different conductivity values vary the meta-atom electromagnetic response, modifying the RIS functionality. A multi-objective optimization framework determines the optimal phase state of each meta-atom to accomplish the desired RIS performance. The operation of the RIS as an efficient beam steerer/splitter, absorber and polarization selector is validated with full-wave results.


Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1513-1561
Author(s):  
Usman Raza ◽  
Abdul Salam

Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs.


2019 ◽  
Vol 7 (4) ◽  
pp. 154-160
Author(s):  
Fransiska Sisilia Mukti

Propagation is one of the important factors to understand in wireless communication systems. Prediction of the value of propagation, especially for closed areas, is very necessary to determine success in building wireless networks. Various kinds of propagation modeling were developed to find the best approach to calculate the value of signal losses. A comparative study of 4 types of empirical propagation modeling was made to provide the most suitable propagation modeling analysis for campus wireless networks. The ITU-R model (P.1238) provides predictive results that are closest to the actual data in the field, with a relative error rate of 16.381%.


2021 ◽  
Author(s):  
Carlos Molero ◽  
Ángel Palomares-Caballero ◽  
Antonio Alex-Amor ◽  
Ignacio Parellada-Serrano ◽  
Francisco Gamiz ◽  
...  

The upcoming high-speed wireless communication systems will be hosted by millimeter and sub-millimeter-wave frequency bands. At these frequencies, electromagnetic waves suffer from severe propagation losses and non-line-of-sight (NLOS) scenarios. A new wireless communication paradigm has arrived to resolve this situation through the use of reconfigurable intelligent surfaces (RIS). These metadevices are designed to reconfigure the wireless environment in a smart way. Traditional RIS designs based on the implementation of 2-D configurations have been considered up to now. However, 3-D structures enable an extra degree of freedom in the design that can be taken as an advantage for the development of improved RIS structures with advanced functionalities. This article proposes the implementation of a novel electronically-reconfigurable RIS based on the use of 3-D graphene meta-atoms. The reconfigurability lies on the graphene conductivity, easily tunable with a biasing voltage. Different conductivity values vary the meta-atom electromagnetic response, modifying the RIS functionality. A multi-objective optimization framework determines the optimal phase state of each meta-atom to accomplish the desired RIS performance. The operation of the RIS as an efficient beam steerer/splitter, absorber and polarization selector is validated with full-wave results.


2021 ◽  
Author(s):  
Ángel Palomares-Caballero ◽  
Carlos Molero ◽  
Antonio Alex-Amor ◽  
Ignacio Parellada-Serrano ◽  
Francisco Gamiz ◽  
...  

The upcoming high-speed wireless communication systems will be hosted by millimeter and sub-millimeter-wave frequency bands. At these frequencies, electromagnetic waves suffer from severe propagation losses and non-line-of-sight (NLOS) scenarios. A new wireless communication paradigm has arrived to resolve this situation through the use of reconfigurable intelligent surfaces (RIS). These metadevices are designed to reconfigure the wireless environment in a smart way. Traditional RIS designs based on the implementation of 2-D configurations have been considered up to now. However, 3-D structures enable an extra degree of freedom in the design that can be taken as an advantage for the development of improved RIS structures with advanced functionalities. This article proposes the implementation of a novel electronically-reconfigurable RIS based on the use of 3-D graphene meta-atoms. The reconfigurability lies on the graphene conductivity, easily tunable with a biasing voltage. Different conductivity values vary the meta-atom electromagnetic response, modifying the RIS functionality. A multi-objective optimization framework determines the optimal phase state of each meta-atom to accomplish the desired RIS performance. The operation of the RIS as an efficient beam steerer/splitter, absorber and polarization selector is validated with full-wave results.


Sign in / Sign up

Export Citation Format

Share Document