scholarly journals Stability Assessment of High and Steep Cutting Rock Slopes with the SSPC Method

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongliang Tao ◽  
Guangli Xu ◽  
Jingwen Meng ◽  
Ronghe Ma ◽  
Jiaxing Dong

The stability of high rock slopes has become a key engineering geological problem in the construction of important projects in mountainous areas. The original slope stability probability classification (SSPC) system, presented by Hack, has made obvious progress and been widely used in rock slope stability analysis. However, the selection and determination of some evaluation indexes in the original SSPC method are usually subjective, such as intact rock strength and weathering degree. In this study, the SSPC method based on geological data obtained in the prospecting tunnels was presented and applied. According to the field survey and exploration of the prospecting tunnels, the weathering degree of the slope rock mass was evaluated. The empirical equation for the maximum stable height of the slope was applied to the slope stability evaluation in the presented SSPC method. Then, the slope stability probability of numerous cutting slopes in the sandstone unit was evaluated using the presented system. Results of the Geostudio software based on the limited equilibrium analysis of the investigated slopes were compared with the results obtained by the SSPC method. The results indicate that the SSPC method is a useful tool for the stability prediction of high and steep rock slopes.

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Faridha Aprilia ◽  
I Gde Budi Indrawan

The stability of rock slopes is controlled by several factors, such as the intact rock strength, discontinuity characteristics, groundwater condition, and slope geometry. Limit equilibrium (LE) analyses have been commonly used in geotechnical practice to evaluate the stability of rock slopes. A number of methods of LE analyses, ranging from simple to sophisticated methods, have been developed. This paper presents stability analyses of rock slopes at the Batu Hijau open mine in Sumbawa Barat using various methods of LE analyses. The LE analyses were conducted at three cross sections of the northern wall of the open mine using the Bishop Simplified, Janbu Simplified, Janbu Generalised, and General Limit Equilibrium (GLE) methods in Slide slope stability package. In addition, a Plane Failure (PF) analysis was performed manually. Shear strength data of the discontinuity planes used in the LE analyses were obtained from back analyses of previous rock slope failures. The LE analysis results showed that the rock slopes were likely to have shallow non-circular critical failure surfaces. The factor of safety (Fs) values obtained from the Bishop Simplified, Janbu Simplified, Janbu Generalised, and GLE methods were found to be similar, while the Fs values obtained from the PF method were higher than those obtained from the more rigorous methods. Keywords: Batu Hijau mine, Bishop Simplified, Janbu Simplified, Janbu Generalised, limit equilibrium analyses, general limit equilibrium, rock slope stability, plane failure.


2021 ◽  
Vol 18 (1) ◽  
pp. 36-43
Author(s):  
Hadeer Ghazi Adeeb ◽  
Ibrahim S. I. AL-JUMAILY

Geological discontinuities play a significant role in the assessment of rock slope stability. Rock slope stability has been studied on the main road between Sulav and Amadiya resorts in Duhok governorate on the southern limb of Mateen anticline, to determine the expected rock slides on this road. Five (5) stations were chosen to study these rock slides that may occur on these steep slopes. All these stations within Pila Spi Formation that consists of hard dolomitic limestone and covering the areas from Sulav resort towards Amadiya district with a length of up to 2.5 Kms. The Stereographic analysis was used to study and classify the stability of these slopes. The analysis showed in all stations the possibility of plane sliding to happen on the bedding plane, and the wedge sliding between the bedding plane and planes of all joint sets, as well as the occurrence of rockfall on some stations.


2020 ◽  
Vol 53 (2F) ◽  
pp. 65-82
Author(s):  
Rebaz Qader

The study of slope stability along the proposed Lerabire road in the Mergasur town, in Erbil city, Kurdistan region of NE-Iraq is carried out. To evaluate the stability of slopes, twenty stations were selected along the mentioned road, two stations in the rock slopes of the Shiranish Formation, eleven stations in the Bekhme Formation, six stations in the Qamchuqa Formation, and one station in the Sarmord Formation. In this study, the stability of rock slopes has been evaluated by the Landslide Possibility Index system. The results of the Landslide Possibility Index category in the rock slopes along the proposed Lerabire road ranges from a very low to low for rock slopes in stations 1 and 2 (marl and marly limestone of the Shiranish Formation, Moderate for rock slopes in stations 3, 4 and 19 (limestone of the Bekhme Formation), High for rock slopes in the stations 5, 6, 7, 8, 9, 10, 11 (limestone of the Bekhme Formation), stations 12, 17 (limestone and marly limestone of the Qamchuqa Formation), station 20 (limestone of the Sarmord Formation and very high for rock slopes in the stations 13, 14, 15, 16 (limestone and marly limestone of the Qamchuqa Formation), station 18 (limestone of the Bekhme Formation). According to Landslide Possibility Index category, the hazard category is Low in station 1 in the Shiranish Formation, but in station 2, 3, 4 and 19 are Moderate, moreover, in the station 5, 11, 12, 17, 18 and 20 are high. The rock slope assessment indicated that the height of the slope face, slope angle, a high degree of weathering, and discontinuities spacing are the factors that increase the failure possibility. To prevent landslide the ditch method is used in the Shiranish Formation rock slopes, the reinforcement techniques are used in the Behkme Formation rock slopes and rock removal methods are used in Qamchuqa and Sarmord Formation rock slopes.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350044 ◽  
Author(s):  
SHUHONG WANG ◽  
PENGPENG NI

Rock slopes stability has been one of the fundamental issues facing geotechnical engineering researchers. Due to the pre-existing joints, the intactness of the rock is weakened. The mechanical characteristics are changed correspondingly along with joint-induced stress redistribution within the rock mass if the sliding limit at the joint or part of it is exceeded. In this study, spatial block topological identification techniques are applied to distinguish all blocks cut by 3D finite random or fixed discontinuities. Based on the available photographic information of rock slopes, the sliding forces and the corresponding factor of safety are evaluated through limit equilibrium conditions by the classic block theory. The rock slope stability analysis software, GeoSMA-3D (Geotechnical Structure and Model Analysis), satisfying the requirements of spatial block modeling, joint plane simulation, key block identification and analysis and sliding process display, was developed. The application of such a software on the analysis of a rock slope, which is located near the inlet of Daiyuling No. 1 tunnel on the Zhuanghe–Gaizhou highway networks, was performed. The assessed results were compared with the monitored data to validate the effectiveness of such software.


2020 ◽  
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Saskia Eppinger, ◽  
Michael Krautblatter

Abstract. In the last two decades, permafrost degradation has been observed to be a major driver of enhanced rock slope instability and associated hazards in high mountains. While the thermal regime of permafrost degradation in high mountains has already been intensively investigated, the mechanical consequences on rock slope stability have so far not been reproduced in numerical models. Laboratory studies and conceptual models argue that warming and thawing decrease rock and discontinuity strength and promote deformation. This study presents the first general approach for a temperature-dependent numerical stability model that simulates the mechanical response of a warming and thawing permafrost rock slope. The proposed procedure is applied to a rockslide at the permafrost-affected Zugspitze summit crest. Laboratory tests on frozen and unfrozen rock joint and intact rock properties provide material parameters for the discontinuum model developed with the Universal Distinct Element Code (UDEC). Geophysical and geotechnical field surveys deliver information on the permafrost distribution and fracture network. The model demonstrates that warming decreases rock slope stability to a critical level, while thawing initiates failure. A sensitivity analysis of the model with a simplified geometry and warming trajectory below 0 °C shows that progressive warming close to the melting point initiates instability above a critical slope angle of 50–62°, depending on the orientation of the fracture network. The increase in displacements intensifies for warming steps closer to zero degree. The simplified and generalised model can be applied to permafrost rock slopes (i) which warm above −4 °C, (ii), with ice-filled joints, (iii) with fractured limestone or probably most of the rock types relevant for permafrost rock slope failure, (iv) with a wide range of slope angles (30–70°) and orientations of the fracture network (consisting of three joint sets). The presented model is the first one capable of assessing the future destabilisation of degrading permafrost rock slopes.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
K. Ma ◽  
N. W. Xu ◽  
Z. Z. Liang

A high-resolution microseismic (MS) monitoring system was implemented at the right bank slope of the Dagangshan hydropower station in May 2010 to analyse the slope stability subjected to continuous excavation. The MS monitoring system could real-time capture a large number of seismic events occurring inside the rock slope. The identification and delineation of rock mass damage subject to excavation and consolidation grouting can be conducted based on the analysis of tempospatial distribution of MS events. However, how to qualitatively evaluate the stability of the rock slope by utilizing these MS data remains challenging. A damage model based on MS data was proposed to analyse the rock mass damage, and a 3D finite element method model of the rock slope was also established. The deteriorated mechanical parameters of rock mass were determined according to the model elements considering the effect of MS damage. With this method, we can explore the effect of MS activities, which are caused by rock mass damage subjected to excavation and strength degradation to the dynamic instability of the slope. When the MS damage effect was taken into account, the safety factor of the rock slope was reduced by 0.18 compared to the original rock slope model without considering the effect. The simulated results show that MS activities, which are subjected to excavation unloading, have only a limited effect on the stability of the right bank slope. The proposed method is proven to be a better approach for the dynamical assessment of rock slope stability and will provide valuable references for other similar rock slopes.


2015 ◽  
Vol 19 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Davood Fereidooni ◽  
Gholam Reza Khanlari ◽  
Mojtaba Heidari

<p>This paper explores the applicability of a modified Q classification system and its component parameters for analysis and conclusion of site investigation data to estimate rock slope stability. Based on the literature, Q classification system has high applicable potential for evaluation of rock mass quality. Therefore, in this study, it was used with RMR and SMR rock mass classification systems to assess stability or instability of different rock slopes along the Hamedan-Ganjnameh-Tuyserkan road, Hamedan province west of Iran. Furthermore, a modified rock mass classification system namely Slope Quality Rating (SQR) was proposed based on the correction of the Q classification parameters and calculating some new parameters such as dip and strike of discontinuities and the method of rock excavation or blasting. For this purpose, the SMR and RMR rock mass classifications were also needed. By measuring SQR for different rock slopes, it will be possible to measure Slope Mass Rating (SMR).</p><p> </p><p><strong>Evaluación del sistema Q modificado de clasificación del macizo rocoso para el análisis de estabilidad de pendiente de roca</strong></p><p> </p><p><strong>Resumen</strong></p>Este artículo explora la aplicabilidad del sistema de clasificación Q modificado y sus parámetros para analizar y determinar la información estimada de estabilidad de pendiente de roca en el sitio determinado de estudio. Según la literatura, el sistema de clasificación Q tiene un alto potencial de aplicabilidad paral a evaluación de la calidad del macizo rocoso. En este estudio además se utilizó el sistema Q junto con los sistemas Índice de Masa de Pendiente (SMR) y Clasificación Geomecánica de Bienawski (RMR) para evaluar la estabilidad e inestabilidad de diferentes pendientes rocosas en la carretera Hamedan-Ganjnameh-Tuyserkan, de la provincia de Hamedan, en el Oeste de Irán. Además, se propone el Índice de Calidad de Pendiente (SQR), un sistema de clasificación de macizo rocoso modificado, a partir de la corrección de los parámetros de clasificación Q y el cálculo de nuevos parámetros como pendiente y caída de las discontinuidades y el método de excavación o explosión de la roca. Para esta propuesta también se utilizaron las clasificaciones SMR y RMR. La medición SQR en diferentes pendientes hizo posible el cálculo del sistema SMR.</p>


Sign in / Sign up

Export Citation Format

Share Document