tectonic stresses
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 937 (4) ◽  
pp. 042087
Author(s):  
A Markov ◽  
A Kazakov ◽  
M Haqberdiyev ◽  
Sh Muhitdinov ◽  
M Rahimova

Abstract In this article, based on accounting, the interaction of the Earth’s crust blocks is limited by the deep breaks in the form of three-layer panels. The analysis dependences for tectonic pressure on elasticity parameters and the Earth’s crust layers capacity were obtained using the hypothesis of linear changes of deformations on the height of panels and the elasticity for bottom layers of the Earth’s crust. This paper considers the elastic interaction of crustal blocks bounded by deep faults in the form of three-layer panels. Using the hypothesis of linear measurement of deformations along with the height of the board and the elastic limit for the lower layer of the Earth’s crust, calculated dependences for tectonic stresses on the elasticity and thickness of the layers of the Earth’s crust are obtained.


2021 ◽  
Author(s):  
Martin Kihoulou ◽  
Ondřej Čadek ◽  
Klára Kalousová ◽  
Gaël Choblet ◽  
Gabriel Tobie
Keyword(s):  

2021 ◽  
Vol 1 (3) ◽  
pp. 71-78
Author(s):  
Sharibzan Kh. Gainanov

Introduction. By the example of the local structures formed by the rock of terrigenous red bed, the present work illustrates the impact made by tectonic fracturing on their properties development. Rock microstructure and strength changes were the results of tectonic stresses during the rock mass formation. The detected zones of increased fracturing are clearly correlated with both the indices of crystal lattice deformation and rock strength properties. Research aim is to assess the impact made by the local structures formation on rock properties and the development of various tectonic stresses. The methodology included rock sampling, fracture survey within the local structure, condition of the mineralogical composition of the samples, determination of the samples strength by uniaxial compression, the rock-forming mineral crystal lattice study using X-ray diffraction analysis, and subsequent analysis and comparison of the obtained materials. Results. A study area fracturing map was compiled and the information on the crystal lattice structure and rock strength was obtained. Correlation between crystal lattice deformations, strength properties of selected samples, and rock fracturing in the rock mass under study was performed. Conclusions. The presented research results explain a wide range of values of strength properties by crystals microstructure imperfection, which, in turn, is closely related to the rock mass destruction.


2021 ◽  
pp. 58-63
Author(s):  
I. E. Semenova ◽  
◽  
I. M. Avetisyan ◽  

The paper presents the results of prediction model studies of the stress–strain behavior in Gakman field of Yukspor deposit during hybrid open pit/underground mining under conditions of high tectonic stresses. The mountainous relief, rock mass faulting with a series of weak structures, geometry of the ore body, the actual and design parameters of stopes, and mining operation under the uncaved overlying stratum with three-sided support are taken into account. Based on the multivariate threedimensional stress–strain modeling using the finite element method, geomechanical substantiation of simultaneous open-pit and underground mining was carried out. It has been established that the geomechanical determinants in Gakman field are: – gravitational and tectonic stresses with a significant excess of the tectonic component over the gravitational component; – mountainous relief of ground surface with a significant elevation difference in the study area; – location of underground mining under the uncaved overlying stratum with three-sided support; – faulting of rock mass with a series of weak structures (Gakman fault); – formation of the open pit and crown pillar above underground mine; – significant lag of the mining front on the underlying levels of level + 320 m. The dimensions of the cross-effect zone and crown pillar when the underground operations approach the open pit mine are determined.


GEODYNAMICS ◽  
2020 ◽  
Vol 2(29)2020 (2(29)) ◽  
pp. 66-78
Author(s):  
K. Bezruchko ◽  
◽  
N. Diachenko ◽  

Purpose. The purpose of the paper is the reconstruction of the geodynamic development of the shear dislocation zone (shear stress fields) of the Krasnoarmiiska monocline (KM) of Donbas (Eastern Ukraine) and determining the relationships of their impact on the emergence of gas-dynamic phenomena (GDP) in coal sediments. Methodology. Methods of digital geological cartography, mining-geometric simulation, geological-structural analysis, and structural-geomorphological reconstruction are used for the analysis of structural-geological information. A complex of methods for statistical processing of data on the tectonic disturbance is used – estimation of the frequency of azimuth orientations by the roses-diagram method. Techniques of morphotectonic analysis of the coal bed (a mathematical technique for identifying the gradient structures) are applied. Results. A tectonic model of formation of pull-aparts in the mode of transtension on the territory of KM (on the example of “Dobropilska” mine) is proposed, which results in manifestations of GDP (in particular “wet blowers”) in the form of a small kettle of subsidence in zones of en echelon overlapping of shears. The latter ones are formed under the action of the shear field of tectonic stresses (the axis of space shortening is (σ1) due to the horizontal shear is oriented in azimuth 160-170° (340-350°), the axis of elongation is (σ3) – 70-80° (250-260°). At this, the combination of fringing Y and T faultings in the conditions of transtension, most likely, provides gas permeability and water permeability of the zone. Structure-kinematic relationships of formation and development of shear dislocations of KM at Donbas are researched. Originality. The structural-kinematic relationships in the formation and development of shear dislocations of the Krasnoarmiiskyi district of Donbas and their impact on the formation of GDP zones were studied firstly. They based on the developed digital model of the actual tectonic disturbance of the rock massif on the example of the mining allotments group of KM. It is established for the first time: a) subparallel disjunctives of the NE orientation (15-30°), regardless of morphology, are as the boundaries of parallelogram-like blocks, forming either scaly packets or packets of fault scarps (depending on the morphology of the faultings), limited in the strike by the fault planes of N-NE and SW fall; in the case of scaly packets in the orientation of the fall of the fault plane it is dominated by the E-SE direction, the faultings limiting the fault scarps are characterized by the opposite WN direction of the fall; b) faultings of SE orientation are morphologically represented by shear-thrusts, and with depth change not only the angle of incidence from 35° to 85°, but also the azimuth of strike (from 20-25° to 50°), forming a fanlike feathering of the main faulting in the plan; c) faultings of different morphology are represented not by a single fault plane, but by a series of disturbances on all stratigraphic horizons, which form a zone of faulting formation – a vertical "tectonic strip"; d) in the SE part of the mine "Pioner" a duplex of compression (transpression mode) was found, it is expressed by a folded system (F), up to 287 m wide and fragments of sloping, changing the strike of the Novoiverskyi thrusts; e) the zone of tension duplexes located in the chain, which have a characteristic broken-step configuration at the "Dobropilska" mine, to which “wet blowers” are connected with, develops due to local strike (transtension); f) paragenesis of deformations in the study area corresponds to the shear field of tectonic stresses with north-northwest direction of compression and east-northeast tension, in which fault-shear displacement occurs along with the disjunctive breaks. Practical significance. The established relationships of the impact of shear tectonics on the formation of GDP in coal beds are important both by clarifying the mechanism of tectonogenesis and the nature of pull-aparts formation (en echelon zones of tension), and by the possibility of using additional prognostic criteria for searching for accumulations of free methane and its sudden manifestations (GDP) in coal beds. The application of knowledge of these relationships at mining enterprises will allow reducing the costs for the struggle against dangerous GDP manifestations and predicting them reliably.


2020 ◽  
Vol 11 (6) ◽  
pp. 468-473
Author(s):  
Chuang Xu ◽  
Hangtao Yu ◽  
Chaolong Yao ◽  
Jinbo Li ◽  
Jianguo Yan

2020 ◽  
Vol 8 ◽  
Author(s):  
Alessandro Tibaldi ◽  
Fabio Luca Bonali ◽  
Federico Pasquaré Mariotto ◽  
Noemi Corti ◽  
Elena Russo ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Chenjun Huang ◽  
Geyun Liu ◽  
Kaibo Shi ◽  
Jinyin Yin ◽  
Jinrui Guo ◽  
...  

2020 ◽  
Author(s):  
Miisa Häkkinen ◽  
Samuel Angiboust ◽  
Benoit Dubacq ◽  
Martine Simoes

<p>Tectonic stresses at the base of decollement thrusts are generally expected to be low due to the presence of mechanically weak evaporites. Yet, the presence of abundant micro-seismicity in the region expected to correspond to the evaporitic layer remains paradoxical. We study here a fossil thrust zone from the base of the Digne nappe (SE France) where exotic thrust slices formed by brecciated Paleozoic basement micaschists are observed within the Mio-Pliocene decollement. Petrographic investigations reveal the presence of highly-substituted phengitic rims (up to Si=3.43 apfu) around pre-alpine muscovitic cores. Similar micaschists sampled in a basement high further North do not exhibit these phengitic rims around muscovite, thus suggesting that white mica zoning relates to a younger overprint. Such high-Silica phengites are commonly found in high-pressure terranes (i.e. 7-15 kbars depending on the buffering assemblage) but are not expected in foreland regions, such as in the Digne area where the overburden has never been thicker than c.5km (i.e. approximately 1.3 kbar). We propose that the mica zoning observed reflects the former presence of non-lithostatic stresses (possibly on the order of several kilobars) related to the elastic charging of a thrust slice “squeezed” at the base of the moving nappe. This finding sheds light on stress distribution as well as on the origin of micro-seismicity along active decollement thrusts in orogenic belts.</p>


Author(s):  
S. N. Tagil’tsev ◽  
A. A. Panzhin

Since the beginning of the 2000s, observations of horizontal and vertical deformations of the earth’s surface using GPS technologies have been carried out in the area of the Kachkanar field. It was found that all observation points experience significant deformations. It is shown that the direction of movement is dominated by sub-latitude movements, and the vector of movement is directed mainly to the East. Vertical displacements of support points have a multidirectional character. the array sections that are experiencing a rise, as well as zones that are experiencing a fall, are identified. At the same time, the vertical displacement pattern is cellular in nature. Based on the assumption that the areas of horizontal and vertical movements are formed by the processes of deformation of the rock mass in the field of tectonic stresses, a geomechanical analysis of movements based on active tectonic disturbances is performed. The analysis is based on the patterns characteristic of the tectonic stress field in the Ural region. In the Central part of the field, 4 main zones of vertical deformations were identified. Analysis of the faults separating the compression and stretching zones shows that the vector of the main stress generating tectonic activity of the mountain range is oriented along the azimuth of 285°. The study shows that the upper part of the earth’s crust reacts to a powerful manmade impact associated with the extraction of minerals. The natural field of tectonic stresses generates activation of existing tectonic disturbances and the formation of new ones. The results of modern activation of the geological environment must be taken into account in the operation and construction of man-made facilities.


Sign in / Sign up

Export Citation Format

Share Document