scholarly journals The Characterizing Properties of (Signless) Laplacian Permanental Polynomials of Almost Complete Graphs

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tingzeng Wu ◽  
Tian Zhou

Let G be a graph with n vertices, and let L G and Q G denote the Laplacian matrix and signless Laplacian matrix, respectively. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L G (respectively, Q G ). In this paper, we show that almost complete graphs are determined by their (signless) Laplacian permanental polynomials.

2016 ◽  
Vol 5 (2) ◽  
pp. 132
Author(s):  
Essam El Seidy ◽  
Salah Eldin Hussein ◽  
Atef Mohamed

We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


2018 ◽  
Vol 6 (1) ◽  
pp. 323-342 ◽  
Author(s):  
S. Barik ◽  
D. Kalita ◽  
S. Pati ◽  
G. Sahoo

AbstractLet G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and signless Laplacian matrix of graphs resulting from various graph operations with special emphasis on corona and graph products. In most cases, we have described the eigenvalues of the resulting graphs along with an explicit description of the structure of the corresponding eigenvectors.


2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


Sign in / Sign up

Export Citation Format

Share Document