scholarly journals Several Characterizations on Degree-Based Topological Indices for Star of David Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nadeem Salamat ◽  
Muhammad Kamran ◽  
Shahbaz Ali ◽  
Md. Ashraful Alam ◽  
Riaz Hussain Khan

In order to make quantitative structure-movement/property/danger relations, topological indices (TIs) are the numbers that are related to subatomic graphs. Some fundamental physicochemical properties of chemical compounds, such as breaking point, protection, and strain vitality, correspond to these TIs. In the compound graph hypothesis, the concept of TIs was developed in view of the degree of vertices. In investigating minimizing exercises of Star of David, these indices are useful. In this study, we explore the different types of Zagreb indices, Randić indices, atom-bond connectivity indices, redefined Zagreb indices, and geometric-arithmetic index for the Star of David. The edge partitions of this network are tabled based on the sum of degrees-of-end vertices and the sum of degree-based edges. To produce closed formulas for some degree-based network TIs, these edge partitions are employed.


2017 ◽  
Vol 82 (2) ◽  
pp. 151-162
Author(s):  
Uzma Ahmad ◽  
Sarfraz Ahmad ◽  
Rabia Yousaf

In QSAR/QSPR studies, topological indices are utilized to predict the bioactivity of chemical compounds. In this paper, the closed forms of different Zagreb indices and atom?bond connectivity indices of regular dendrimers G[n] and H[n] in terms of a given parameter n are determined by using the automorphism group action. It was reported that these connectivity indices are correlated with some physicochemical properties and are used to measure the level of branching of the molecular carbon-atom skeleton.



2016 ◽  
Vol 94 (6) ◽  
pp. 559-565 ◽  
Author(s):  
Shehnaz Akhter ◽  
Muhammad Imran

Topological descriptors are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity, and geometric–arithmetic are used to predict the bioactivity of different chemical compounds. There are certain types of topological descriptors such as degree-based topological indices, distance-based topological indices, counting-related topological indices, etc. Among degree-based topological indices, the so-called atom–bond connectivity and geometric–arithmetic are of vital importance. These topological indices correlate certain physicochemical properties such as boiling point, stability, strain energy, etc., of chemical compounds. In this paper, analytical closed formulas for Zagreb indices, multiplicative Zagreb indices, harmonic index, and sum-connectivity index of the strong product of graphs are determined.



2017 ◽  
Vol 95 (2) ◽  
pp. 134-143 ◽  
Author(s):  
M. Javaid ◽  
Masood Ur Rehman ◽  
Jinde Cao

For a molecular graph, a numeric quantity that characterizes the whole structure of a graph is called a topological index. In the studies of quantitative structure – activity relationship (QSAR) and quantitative structure – property relationship (QSPR), topological indices are utilized to guess the bioactivity of chemical compounds. In this paper, we compute general Randić, first general Zagreb, generalized Zagreb, multiplicative Zagreb, atom-bond connectivity (ABC), and geometric arithmetic (GA) indices for the rhombus silicate and rhombus oxide networks. In addition, we also compute the latest developed topological indices such as the fourth version of ABC (ABC4), the fifth version of GA (GA5), augmented Zagreb, and Sanskruti indices for the foresaid networks. At the end, a comparison between all the indices is included, and the result is shown with the help of a Cartesian coordinate system.



2015 ◽  
Vol 93 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Abdul Qudair Baig ◽  
Muhammad Imran ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study different interconnection networks and derive analytical closed results of the general Randić index (Rα(G)) for α = 1, [Formula: see text], –1, [Formula: see text] only, for dominating oxide network (DOX), dominating silicate network (DSL), and regular triangulene oxide network (RTOX). All of the studied interconnection networks in this paper are motivated by the molecular structure of a chemical compound, SiO4. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices and give closed formulae of these indices for these interconnection networks.



2016 ◽  
Vol 94 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Syed Ahtsham Ul Haq Bokhary ◽  
Muhammad Imran ◽  
Sadia Manzoor

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of different chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study the degree-based molecular topological indices such as ABC4 and GA5 for certain families of dendrimers. We derive the analytical closed formulae for these classes of dendrimers.



2017 ◽  
Vol 09 (05) ◽  
pp. 1750066 ◽  
Author(s):  
Muhammad Imran ◽  
Shehnaz Akhter

The topological indices are useful tools to the theoretical chemists that are provided by the graph theory. They correlate certain physicochemical properties such as boiling point, strain energy, stability, etc. of chemical compounds. For a graph [Formula: see text], the double graph [Formula: see text] is a graph obtained by taking two copies of graph [Formula: see text] and joining each vertex in one copy with the neighbors of corresponding vertex in another copy and strong double graph SD[Formula: see text] of the graph [Formula: see text] is the graph obtained by taking two copies of the graph [Formula: see text] and joining each vertex [Formula: see text] in one copy with the closed neighborhood of the corresponding vertex in another copy. In this paper, we compute the general sum-connectivity index, general Randi[Formula: see text] index, geometric–arithmetic index, general first Zagreb index, first and second multiplicative Zagreb indices for double graphs and strong double graphs and derive the exact expressions for these degree-base topological indices for double graphs and strong double graphs in terms of corresponding index of original graph [Formula: see text].



Author(s):  
Fawaz E. Alsaadi ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Aqsa Shah ◽  
Usman Ali ◽  
Jinde Cao ◽  
...  

AbstractThe main purpose of a topological index is to encode a chemical structure by a number. A topological index is a graph invariant, which decribes the topology of the graph and remains constant under a graph automorphism. Topological indices play a wide role in the study of QSAR (quantitative structure-activity relationship) and QSPR (quantitative structure-property relationship). Topological indices are implemented to judge the bioactivity of chemical compounds. In this article, we compute the ABC (atom-bond connectivity); ABC4 (fourth version of ABC), GA (geometric arithmetic) and GA5 (fifth version of GA) indices of some networks sheet. These networks include: octonano window sheet; equilateral triangular tetra sheet; rectangular sheet; and rectangular tetra sheet networks.



2019 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nisar Fatima ◽  
Akhlaq Ahmad Bhatti ◽  
Akbar Ali ◽  
Wei Gao

Abstract It is well known fact that several physicochemical properties of chemical compounds are closely related to their molecular structure. Mathematical chemistry provides a method to predict the aforementioned properties of compounds using topological indices. The Zagreb indices are among the most studied topological indices. Recently, three modified versions of the Zagreb indices were proposed independently in [Ali, A.; Trinajstić, N. A novel/old modification of the first Zagreb index, arXiv:1705.10430 [math.CO] 2017; Mol. Inform. 2018, 37, 1800008] and [Naji, A. M.; Soner, N. D.; Gutman, I. On leap Zagreb indices of graphs, Commun. Comb. Optim. 2017, 2, 99–117], which were named as the Zagreb connection indices and the leap Zagreb indices, respectively. In this paper, we check the chemical applicability of the newly considered Zagreb connection indices on the set of octane isomers and establish general expressions for calculating these indices of two well-known dendrimer nanostars.



2017 ◽  
Vol 72 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Adnan Aslam ◽  
Yasir Bashir ◽  
Safyan Ahmad ◽  
Wei Gao

AbstractA topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.



Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 43
Author(s):  
José M. Sigarreta

A topic of current interest in the study of topological indices is to find relations between some index and one or several relevant parameters and/or other indices. In this paper we study two general topological indices Aα and Bα, defined for each graph H=(V(H),E(H)) by Aα(H)=∑ij∈E(H)f(di,dj)α and Bα(H)=∑i∈V(H)h(di)α, where di denotes the degree of the vertex i and α is any real number. Many important topological indices can be obtained from Aα and Bα by choosing appropriate symmetric functions and values of α. This new framework provides new tools that allow to obtain in a unified way inequalities involving many different topological indices. In particular, we obtain new optimal bounds on the variable Zagreb indices, the variable sum-connectivity index, the variable geometric-arithmetic index and the variable inverse sum indeg index. Thus, our approach provides both new tools for the study of topological indices and new bounds for a large class of topological indices. We obtain several optimal bounds of Aα (respectively, Bα) involving Aβ (respectively, Bβ). Moreover, we provide several bounds of the variable geometric-arithmetic index in terms of the variable inverse sum indeg index, and two bounds of the variable inverse sum indeg index in terms of the variable second Zagreb and the variable sum-connectivity indices.



Sign in / Sign up

Export Citation Format

Share Document