scholarly journals Rational Wave Solutions and Dynamics Properties of the Generalized ( 2 + 1 )-Dimensional Calogero-Bogoyavlenskii-Schiff Equation by Using Bilinear Method

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lihui Han ◽  
Sudao Bilige Bilige ◽  
Xiaomin Wang ◽  
Meiyu Li ◽  
Runfa Zhang

Through symbolic computation with Maple, fifty-seven sets of rational wave solutions to the generalized Calogero-Bogoyavlenskii-Schiff equation are presented by employing the generalized bilinear operator when the parameter p = 2 . Via the three-dimensional plots and contour plots with the help of Maple, the dynamics of these solutions are described very well. These solutions have greatly enriched the exact solutions of the generalized Calogero-Bogoyavlenskii-Schiff equation on the existing literature. The result will be widely used to describe many nonlinear scientific phenomena.

2021 ◽  
pp. 2150437
Author(s):  
Liyuan Ding ◽  
Wen-Xiu Ma ◽  
Yehui Huang

A (2+1)-dimensional generalized Kadomtsev–Petviashvili–Ito equation is introduced. Upon adding some second-order derivative terms, its various lump solutions are explicitly constructed by utilizing the Hirota bilinear method and calculated through the symbolic computation system Maple. Furthermore, two specific lump solutions are obtained with particular choices of the parameters and their dynamical behaviors are analyzed through three-dimensional plots and contour plots.


2020 ◽  
Vol 34 (36) ◽  
pp. 2050419
Author(s):  
Wang Shen ◽  
Zhengyi Ma ◽  
Jinxi Fei ◽  
Quanyong Zhu

Based on the Hirota bilinear method and symbolic computation, abundant exact solutions, including lump, lump–soliton, and breather solutions, are computed for the coupled Alice–Bob system of the Hirota–Satsuma–Ito equation in (2 + 1)-dimensions. The three-dimensional figures of these solutions are presented, which illustrate the characteristics of these solutions.


2021 ◽  
pp. 2150383
Author(s):  
Onur Alp Ilhan ◽  
Sadiq Taha Abdulazeez ◽  
Jalil Manafian ◽  
Hooshmand Azizi ◽  
Subhiya M. Zeynalli

Under investigation in this paper is the generalized Konopelchenko–Dubrovsky–Kaup-Kupershmidt equation. Based on bilinear method, the multiple rogue wave (RW) solutions and the novel multiple soliton solutions are constructed by giving some specific activation functions for the considered model. By means of symbolic computation, these analytical solutions and corresponding rogue wave solutions are obtained via Maple 18 software. The exact lump and RW solutions, by solving the under-determined nonlinear system of algebraic equations for the specified parameters, will be constructed. Via various three-dimensional plots and density plots, dynamical characteristics of these waves are exhibited.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hongcai Ma ◽  
Yunxiang Bai ◽  
Aiping Deng

In this paper, we investigate multiple lump wave solutions of the new (4+1)-dimensional Fokas equation by adopting a symbolic computation method. We get its 1-lump solutions, 3-lump solutions, and 6-lump solutions by using its bilinear form. Moreover, some basic characters and structural features of multiple lump waves are explained by depicting the three-dimensional plots.


2020 ◽  
pp. 2150116
Author(s):  
Cheng-Cheng Zhou ◽  
Xing Lü ◽  
Hai-Tao Xu

Based on the prime number [Formula: see text], a generalized (3+1)-dimensional Kadomtsev-Petviashvili (KP)-type equation is proposed, where the bilinear operators are redefined through introducing some prime number. Computerized symbolic computation provides a powerful tool to solve the generalized (3+1)-dimensional KP-type equation, and some exact solutions are obtained including lump-type solution and interaction solution. With numerical simulation, three-dimensional plots, density plots, and two-dimensional curves are given for particular choices of the involved parameters in the solutions to show the evolutionary characteristics.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1127 ◽  
Author(s):  
Imad Jaradat ◽  
Marwan Alquran

A new two-mode version of the generalized Zakharov-Kuznetsov equation is derived using Korsunsky’s method. This dynamical model describes the propagation of two-wave solitons moving simultaneously in the same direction with mutual interaction that depends on an embedded phase-velocity parameter. Three different methods are used to obtain exact bell-shaped soliton solutions and singular soliton solutions to the proposed model. Two-dimensional and three-dimensional plots are also provided to illustrate the interaction dynamics of the obtained two-wave exact solutions upon increasing the phase-velocity parameter.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050329
Author(s):  
Pengfei Han ◽  
Taogetusang

The [Formula: see text]-dimensional generalized Korteweg-de Vries (KdV)-type model equation is investigated based on the Hirota bilinear method. Diversity of exact solutions for this equation are obtained with the help of symbolic computation. We depicted the physical explanation of the extracted solutions with the free choice of the different parameters by plotting three-dimensional plots and contour plots. The obtained results are useful in gaining the understanding of high dimensional soliton-like structures equation related to mathematical physics branches, natural sciences and engineering areas.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xueqin Wang ◽  
Yadong Shang ◽  
Huahui Di

We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950038 ◽  
Author(s):  
Solomon Manukure ◽  
Yuan Zhou

We introduce a new (2+1)-dimensional equation by modifying the potential form of the Calogero–Bogoyavlenskii–Schiff (CBS) equation. By applying the Hirota bilinear method, we construct explicit lump solutions to this new equation and establish necessary and sufficient conditions that guarantee that the solutions are analytic and rationally localized in all directions in space. We also depict the evolution of the profiles of some selected lump solutions with three-dimensional and contour plots. It is immediately observed that the lump solutions generated are solitary wave type solutions as is the case with the KP equation.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Yanni Zhang ◽  
Jing Pang

Based on the Hirota bilinear form of the generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation, the lump and lump-type solutions are generated through symbolic computation, whose analyticity can be easily achieved by taking special choices of the involved parameters. The property of solutions is investigated and exhibited vividly by three-dimensional plots and contour plots.


Sign in / Sign up

Export Citation Format

Share Document