scholarly journals Average-ILC-Based Consensus Tracking of Multiagent Systems over Wireless Networks in Presence of Channel Noise and Data Dropout

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chenlong Li ◽  
Yong Fang ◽  
Zhichao Sheng

In a multiagent system (MAS), communication signals are affected by harsh wireless networks when they are transmitted from an agent to its neighboring agents, leading to the inconsistency of the MAS. In this paper, an average-iterative learning control (average-ILC) method is studied to address the consensus problem of MAS over wireless networks in the presence of channel noise and data dropout. The combined effects of channel noise and data dropout on iterative learning controllers are carefully analyzed. Based on graph theory and mathematical expectation, the corresponding average-iterative learning scheme is proposed. Especially, a sufficient condition is derived for the average-iterative learning scheme. Rigorous theoretical analysis demonstrates that the convergence of the covariance matrix of tracking error can be guaranteed with the help of an average-iterative learning scheme. Finally, simulation results are given to show the effectiveness of the proposed method.

2018 ◽  
Vol 06 (03) ◽  
pp. 209-219 ◽  
Author(s):  
Zijian Luo ◽  
Wenjun Xiong ◽  
Xinghuo Yu

By using the representation of solutions of delay differential equation involving delayed exponential matrix, we study finite-time consensus convergence of iterative learning control for multi-node systems with time-delays in repeatable operating environments with a fixed and directed communication topology and delay. Sufficient conditions for both iteration-invariant and iteration-varying consensus tracking trajectories are given to guarantee the convergence of consensus tracking error in the sense of [Formula: see text]-norm. Finally, numerical examples are given to verify the theoretical results.


Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 185 ◽  
Author(s):  
Yu-Juan Luo ◽  
Cheng-Lin Liu ◽  
Guang-Ye Liu

This paper deals with the consensus tracking problem of heterogeneous linear multiagent systems under the repeatable operation environment, and adopts a proportional differential (PD)-type iterative learning control (ILC) algorithm based on the fractional-power tracking error. According to graph theory and operator theory, convergence condition is obtained for the systems under the interconnection topology that contains a spanning tree rooted at the reference trajectory named as the leader. Our algorithm based on fractional-power tracking error achieves a faster convergence rate than the usual PD-type ILC algorithm based on the integer-order tracking error. Simulation examples illustrate the correctness of our proposed algorithm.


Author(s):  
Zimian Lan

In this paper, we propose a new iterative learning control algorithm for sensor faults in nonlinear systems. The algorithm does not depend on the initial value of the system and is combined with the open-loop D-type iterative learning law. We design a period that shortens as the number of iterations increases. During this period, the controller corrects the state deviation, so that the system tracking error converges to the boundary unrelated to the initial state error, which is determined only by the system’s uncertainty and interference. Furthermore, based on the λ norm theory, the appropriate control gain is selected to suppress the tracking error caused by the sensor fault, and the uniform convergence of the control algorithm and the boundedness of the error are proved. The simulation results of the speed control of the injection molding machine system verify the effectiveness of the algorithm.


2020 ◽  
Vol 42 (12) ◽  
pp. 2166-2177
Author(s):  
Gaoyang Jiang ◽  
Zhongsheng Hou

Trajectory-based aircraft operation and control is one of the hot issues in air traffic management. However, the accurate mechanism modeling of aircraft is tough work, and the operation data have not been effectively utilized in many studies. So, in this work, we apply the model-free adaptive iterative learning control method to address the time-of-arrival control problem in trajectory-based aircraft operation. This problem is first formulated into a trajectory tracking problem with along-track wind disturbance. Through rigorous analysis, it is shown that this method, combined with point-to-point iterative learning control (ILC) strategy, can effectively deal with the arrival time control problem with multiple time constraints. Then, the terminal ILC strategy is applied, aiming to resolve the same problem with a time constraint at the end point. Compared with the PID (Proportional Integral Derivative) type ILC, the proposed method improves control performance by 11.15% in root mean square of tracking error and 9.32% in integral time absolute error. The sensitivity and flexibility of the data-driven approach is further verified through numerical simulations.


Author(s):  
Shuhua Su ◽  
Gang Chen

In order to achieve stable steering and path tracking, a lateral robust iterative learning control method for unmanned driving robot vehicle is proposed. Combining the nonlinear tire dynamic model with the vehicle dynamic model, the nonlinear vehicle dynamic model is constructed. The structure of steering manipulator of unmanned driving robot vehicle is analyzed, and the kinematics model and dynamics model of steering manipulator of unmanned driving robot vehicle are established. The structure of vehicle steering system is analyzed, and the dynamic model of vehicle steering system is established. Vehicle steering angle model is established by taking vehicle path tracking error and vehicle yaw angle error as input. Combining with the typical iterative learning control law, the robust term is added to the control law, and a robust iterative learning controller for steering manipulator system of unmanned driving robot vehicle is designed. The proposed controller’s stability and astringency are proved. The effectiveness of the proposed method is verified by comparing it with other control methods and human driver simulation tests.


Sign in / Sign up

Export Citation Format

Share Document