scholarly journals Statistical Development of the V S Q -Control Chart for Extreme Data with an Application to the Carbon Fiber Industry

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Faisal Shah ◽  
Zahid Khan ◽  
Muhammad Aslam ◽  
Seifedine Kadry

The normality assumption is a significant part of the development of control charts. This underlying assumption of normality most likely does not hold true in real scenarios. One of such designs usually devised to observe the target parameter σ 2 of the Maxwell quality characteristics is the V -control chart. In general, quality practitioners preferably have to observe the scale parameter σ rather than σ 2 in examined processes. The contemporary V -control chart is relying on the V -statistic which does not hold the unbiasedness property with respective to parameter σ of the Maxwell probability model. In view of this, implementation of the V -chart is not an appropriate design in monitoring a real parameter of the underlying Maxwell data. To accommodate the monitoring of the parameter σ of the Maxwell model, a novel design of the V S Q -chart is mainly proposed in this work. To support a statistical understanding of the V S Q -chart, power function, characteristic function, and the average run length ARL have been essentially established. The parameters of the V S Q -chart are determined from the results of the sampling distribution of the derived statistic. Analytical findings are further applied to determine the performance of the study proposal with its existing counterpart. Substantially, the better performance of the proposed technique has been observed because of statistical power used as a performance measure. Eventually, the computational plan of the V S Q -chart is considered both for the simulated and real datasets with the aim of illustrating the theory of the proposed design.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Said Farooq Shah ◽  
Zawar Hussain ◽  
Muhammad Riaz ◽  
Salman Arif Cheema

Data privacy is a serious issue and therefore needs our attention. In this study, we propose masking through randomized response techniques (RRTs) to ensure the privacy and thus to avoid falsification. We assume that the process characteristic is of sensitive nature, and due to privacy issue, the actual measurements cannot be shared with the monitoring team. In such situations, the producer is very likely to falsify the measurements. Consequently, the usual control charting techniques will mislead about the process status. We discuss different data masking strategies to be used with Shewhart-type control charts. The usual Shewhart-type control chart appears to be a subchart of the proposed charts. Average run length (ARL) is used as a performance measure of the study proposals. We have evaluated the performance of the proposed charts for different shift sizes and under different intensities of masking. We have also carried out a comparative analysis for various models under varying sensitivity parameters. We have also compared the performance of the proposals with the traditional Shewhart chart. It is observed that the B-L control chart under the RRT model performs better for smaller shifts and for larger shift sizes, the G-B chart under an unrelated question model tperforms better. A real-life application of the study proposal is also considered where monitoring of thickness of paint on refrigerators is of interest.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


2020 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
O. L. Aako ◽  
J. A. Adewara ◽  
K. S Adekeye ◽  
E. B. Nkemnole

The fundamental assumption of variable control charts is that the data are normally distributed and spread randomly about the mean. Process data are not always normally distributed, hence there is need to set up appropriate control charts that gives accurate control limits to monitor processes that are skewed. In this study Shewhart-type control charts for monitoring positively skewed data that are assumed to be from Marshall-Olkin Inverse Loglogistic Distribution (MOILLD) was developed. Average Run Length (ARL) and Control Limits Interval (CLI) were adopted to assess the stability and performance of the MOILLD control chart. The results obtained were compared with Classical Shewhart (CS) and Skewness Correction (SC) control charts using the ARL and CLI. It was discovered that the control charts based on MOILLD performed better and are more stable compare to CS and SC control charts. It is therefore recommended that for positively skewed data, a Marshall-Olkin Inverse Loglogistic Distribution based control chart will be more appropriate.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Darmanto Darmanto

<p><em>The manufacturing production process that is currently trend is short-run. Short-run process is a job shop and a just in-time. These causes the process parameters to be unknown due to unavailability of data and generally a small amount of product. The control chart is one of the control charts which  designed for the short run. The procedure of the control chart follows the concept of succesive difference and under the assumption of the multivariate Normal distribution. The sensitivity level of a control chart is evaluated based on the average run length (ARL) value. In this study, the ARL value was calculated based on the shift simulation of the average vector by recording the first m-point out of the control limits. The average vector shift simulation of the target () is performed simultaneously with the properties of a positive shift (=+ δ). Variations of data size and many variables in this study were m = 20, 50 and p = 2, 4, 8, respectively. Each scheme (a combination of δ, m and p) is iterated 250,000 times. The simulation results show that for all schemes when both parameters are known ARL<sub>0 </sub>≈ 370. But, when parameters are unknown, ARL<sub>1</sub> turn to smaller. This conclusion also implied when the number of p and n are increased, it reduce the sensitivity of the control chart.</em></p>


Author(s):  
MARCUS B. PERRY ◽  
JOSEPH J. PIGNATIELLO ◽  
JAMES R. SIMPSON

Statistical process control charts are intended to assist operators in detecting process changes. If a process change does occur, the control chart should detect the change quickly. If the operator is provided with an estimate as to when the process changed, the search to find the special cause can be more easily facilitated. We investigate a process-monitoring tool for Poisson count data that quickly responds to process mean count rate changes regardless of the magnitude of the change, while supplying useful diagnostic information. A likelihood ratio approach was used to develop a control chart for a permanent step change in a Poisson process rate parameter. The average run length (ARL) performance of this chart is compared to that of several Poisson cumulative sum (CUSUM) control charts. Our performance results show that the proposed chart performs better than any one CUSUM chart over a wide range of potential shift magnitudes. The proposed chart also provides maximum likelihood estimates of the time and the magnitude of the process shift. These crucial change point diagnostics can greatly enhance the special cause investigation.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012019
Author(s):  
M Qori’atunnadyah ◽  
Wibawati ◽  
W M Udiatami ◽  
M Ahsan ◽  
H Khusna

Abstract In recent years, the manufacturing industry has tended to reduce mass production and produce in small quantities, which is called “Short Run Production”. In such a situation, the course of the production process is short, usually, the number of productions is less than 50. Therefore, a control chart for the short run production process is required. This paper discusses the comparison between multivariate control chart for short run production (V control chart) and T2 Hotelling control chart applied to sunergy glass data. Furthermore, a simulation of Average Run Length (ARL) was carried out to determine the performance of the two control charts. The results obtained are that the production process has not been statistically controlled using either the V control chart or the T2 Hotelling control chart. The number of out-of-control on the control chart V using the the EWMA test is more than the T2 Hotelling control chart. Based on the ARL value, it shows that the V control chart is more sensitive than the T2 Hotelling control chart.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Muhammad Saleem ◽  
Rehan Ahmad Khan Sherwani ◽  
Chi-Hyuck Jun

More recently in statistical quality control studies, researchers are paying more attention to quality characteristics having nonnormal distributions. In the present article, a generalized multiple dependent state (GMDS) sampling control chart is proposed based on the transformation of gamma quality characteristics into a normal distribution. The parameters for the proposed control charts are obtained using in-control average run length (ARL) at specified shape parametric values for different specified average run lengths. The out-of-control ARL of the proposed gamma control chart using GMDS sampling is explored using simulation for various shift size changes in scale parameters to study the performance of the control chart. The proposed gamma control chart performs better than the existing multiple dependent state sampling (MDS) based on gamma distribution and traditional Shewhart control charts in terms of average run lengths. A case study with real-life data from ICU intake to death caused by COVID-19 has been incorporated for the realistic handling of the proposed control chart design.


Author(s):  
Kim Phuc Tran ◽  
Philippe Castagliola ◽  
Thi Hien Nguyen ◽  
Anne Cuzol

In the literature, median type control charts have been widely investigated as easy and efficient means to monitor the process mean when observations are from a normal distribution. In this work, a Variable Sampling Interval (VSI) Exponentially Weighted Moving Average (EWMA) median control chart is proposed and studied. The Markov chains are used to calculate the average run length to signal (ARL). A performance comparison with the original EWMA median control chart is made. The numerical results show that the proposed chart is considerably more effective as it is faster in detecting process shifts. Finally, the implementation of the proposed chart is illustrated with an example in food production process.


Technologies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 69
Author(s):  
Muhammad Mughal ◽  
Muhammad Azam ◽  
Muhammad Aslam

Among the Statistical Process Control (SPC) techniques, control charts are considered to be high weight-age due to their effectiveness in process variation. As the Shewhart’s charts are not that active in monitoring small and moderate process variations, the statisticians have been making efforts to improve the performance of the control chart by introducing several techniques within the tool. These techniques consist of experimenting with different estimators, different sampling selection techniques, and mixed methodologies. The proposed chart is one of the examples of a mixed chart technique that has shown its efficiency in monitoring small variations better than any of the existing techniques in the specific situation of auxiliary information. To show and compare its performance, average run length (ARL) tables and ARL curves have been presented in the article. An industrial example has also been included to show the practical application of the proposed chart in a real scenario.


Sign in / Sign up

Export Citation Format

Share Document