scholarly journals Volatile Profile Characterization of Winter Jujube from Different Regions via HS-SPME-GC/MS and GC-IMS

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yening Qiao ◽  
Jinfeng Bi ◽  
Qinqin Chen ◽  
Xinye Wu ◽  
Min Gou ◽  
...  

A combined untargeted and targeted approach was established for fingerprinting volatile organic compounds in winter jujubes from eight regions of China. Volatiles, including alcohols, aldehydes, acids, esters, and alkenes, were identified by gas chromatography-ion mobility spectrometry (GC-IMS). Benzyl alcohol, octanoic acid, 2-hexenal, linalool, 2-nonenal, and ethyl decanoate were the most common compounds present in all jujubes. Principal component analysis (PCA) from GC-IMS and untargeted E-nose showed that the main volatile organic compounds (VOCs) of most jujubes were similar. The volatile organic compounds of winter jujubes from Yuncheng city, Shanxi province, and Aksu region, Xinjiang province, were significantly different from those from other regions. 1-Penten-3-ol, ethyl hexanoate, methyl laurate, and 2-formyltoluene were the markers of XJAKS with green and fruity aroma, and SXYC could be labeled by acetone and 2-methoxyphenol with woody and pungent aroma. GC-IMS was an effective method for volatile fingerprinting of jujubes with high sensitivity and accuracy.

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4119
Author(s):  
Shan Cao ◽  
Jingyu Sun ◽  
Xiaoyong Yuan ◽  
Weihui Deng ◽  
Balian Zhong ◽  
...  

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the only natural vector of bacteria responsible for Huanglongbing (HLB), a worldwide destructive disease of citrus. ACP reproduces and develops only on the young leaves of its rutaceous host plants. Olfactory stimuli emitted by young leaves may play an important role in ACP control and HLB detection. In this study, volatile organic compounds (VOCs) from healthy and HLB-infected young leaves of navel orange and pomelo were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 36 compounds (including dimers or polymers) were identified and quantified from orange and 10 from pomelo leaves. Some compounds showed significant differences in signal intensity between healthy and HLB-infected leaves and may constitute possible indicators for HLB infection. Principal component analysis (PCA) clearly discriminated healthy and HLB-infected leaves in both orange and pomelo. HS-GC-IMS was an effective method to identify VOCs from leaves. This study may help develop new methods for detection of HLB or find new attractants or repellents of ACP for prevention of HLB.


2011 ◽  
Vol 45 (34) ◽  
pp. 6191-6196 ◽  
Author(s):  
Yu Huang ◽  
Steven Sai Hang Ho ◽  
Kin Fai Ho ◽  
Shun Cheng Lee ◽  
Yuan Gao ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (50) ◽  
pp. no-no
Author(s):  
Ann E. Visser ◽  
W. Matthew Reichert ◽  
Richard P. Swatloski ◽  
Heather D. Willauer ◽  
Jonathan G. Huddleston ◽  
...  

2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


Sign in / Sign up

Export Citation Format

Share Document