scholarly journals An Improved Algorithm Based on Fast Search and Find of Density Peak Clustering for High-Dimensional Data

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hui Du ◽  
Yiyang Ni ◽  
Zhihe Wang

The find of density peak clustering algorithm (FDP) has poor performance on high-dimensional data. This problem occurs because the clustering algorithm ignores the feature selection. All features are evaluated and calculated under the same weight, without distinguishing. This will lead to the final clustering effect which cannot achieve the expected. Aiming at this problem, we propose a new method to solve it. We calculate the importance value of all features of high-dimensional data and calculate the mean value by constructing random forest. The features whose importance value is less than 10% of the mean value are removed. At this time, we extract the important features to form a new dataset. At this time, improved t-SNE is used for dimension reduction, and better performance will be obtained. This method uses t-SNE that is improved by the idea of random forest to reduce the dimension of the original data and combines with improved FDP to compose the new clustering method. Through experiments, we find that the evaluation index NMI of the improved algorithm proposed in this paper is 23% higher than that of the original FDP algorithm, and 9.1% higher than that of other clustering algorithms ( K -means, DBSCAN, and spectral clustering). It has good performance in high-dimensional datasets that are verified by experiments on UCI datasets and wireless sensor networks.

2020 ◽  
pp. 1-12
Author(s):  
Xiaoguang Gao

The unbalanced development strategy makes the regional development unbalanced. Therefore, in the development process, resources must be effectively utilized according to the level and characteristics of each region. Considering the resource and environmental constraints, this paper measures and analyzes China’s green economic efficiency and green total factor productivity. Moreover, by expounding the characteristics of high-dimensional data, this paper points out the problems of traditional clustering algorithms in high-dimensional data clustering. This paper proposes a density peak clustering algorithm based on sampling and residual squares, which is suitable for high-dimensional large data sets. The algorithm finds abnormal points and boundary points by identifying halo points, and finally determines clusters. In addition, from the experimental comparison on the data set, it can be seen that the improved algorithm is better than the DPC algorithm in both time complexity and clustering results. Finally, this article analyzes data based on actual cases. The research results show that the method proposed in this paper is effective.


2021 ◽  
Vol 560 ◽  
pp. 476-492
Author(s):  
Maria d’Errico ◽  
Elena Facco ◽  
Alessandro Laio ◽  
Alex Rodriguez

2009 ◽  
Vol 35 (7) ◽  
pp. 859-866
Author(s):  
Ming LIU ◽  
Xiao-Long WANG ◽  
Yuan-Chao LIU

2012 ◽  
Vol 8 (2) ◽  
pp. 44-63 ◽  
Author(s):  
Baoxun Xu ◽  
Joshua Zhexue Huang ◽  
Graham Williams ◽  
Qiang Wang ◽  
Yunming Ye

The selection of feature subspaces for growing decision trees is a key step in building random forest models. However, the common approach using randomly sampling a few features in the subspace is not suitable for high dimensional data consisting of thousands of features, because such data often contains many features which are uninformative to classification, and the random sampling often doesn’t include informative features in the selected subspaces. Consequently, classification performance of the random forest model is significantly affected. In this paper, the authors propose an improved random forest method which uses a novel feature weighting method for subspace selection and therefore enhances classification performance over high-dimensional data. A series of experiments on 9 real life high dimensional datasets demonstrated that using a subspace size of features where M is the total number of features in the dataset, our random forest model significantly outperforms existing random forest models.


2019 ◽  
Vol 1229 ◽  
pp. 012024 ◽  
Author(s):  
Fan Hong ◽  
Yang Jing ◽  
Hou Cun-cun ◽  
Zhang Ke-zhen ◽  
Yao Ruo-xia

2020 ◽  
Author(s):  
Xiao Lai ◽  
Pu Tian

AbstractSupervised machine learning, especially deep learning based on a wide variety of neural network architectures, have contributed tremendously to fields such as marketing, computer vision and natural language processing. However, development of un-supervised machine learning algorithms has been a bottleneck of artificial intelligence. Clustering is a fundamental unsupervised task in many different subjects. Unfortunately, no present algorithm is satisfactory for clustering of high dimensional data with strong nonlinear correlations. In this work, we propose a simple and highly efficient hierarchical clustering algorithm based on encoding by composition rank vectors and tree structure, and demonstrate its utility with clustering of protein structural domains. No record comparison, which is an expensive and essential common step to all present clustering algorithms, is involved. Consequently, it achieves linear time and space computational complexity hierarchical clustering, thus applicable to arbitrarily large datasets. The key factor in this algorithm is definition of composition, which is dependent upon physical nature of target data and therefore need to be constructed case by case. Nonetheless, the algorithm is general and applicable to any high dimensional data with strong nonlinear correlations. We hope this algorithm to inspire a rich research field of encoding based clustering well beyond composition rank vector trees.


Sign in / Sign up

Export Citation Format

Share Document