scholarly journals A Multiscale Assessment of Three Satellite Precipitation Products (TRMM, CMORPH, and PERSIANN) in the Three Gorges Reservoir Area in China

2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Tianyu Zhang ◽  
Yu Yang ◽  
Zeyu Dong ◽  
Shu Gui

This study evaluated three satellite precipitation products, namely, TRMM, CMORPH, and PERSIANN, over the Three Gorges Reservoir area in China at multiple timescales. The assessment covered the following aspects: the rainfall amount, extreme precipitation, and the rainy-day detection ability. Results indicated that the CMORPH and TRMM estimates of rainfall amount were reasonably good, but the PERSIANN showed a larger bias than the other two satellite products. The data precision of CMORPH was slightly better than TRMM. All three satellite products could reproduce the diurnal cycle of rainfall, i.e., more precipitation in the morning than in the evening. The CMORPH estimates were closest to the gauge observation at 3-hourly and 12-hourly timescales. The data accuracy of CMORPH data was better during the night than in the daytime. At daily timescale, the quality of TRMM data was slightly inferior to the CMORPH, whereas the PERSIANN still differed much from the ground observation. At monthly, seasonally, and yearly timescales, the performance of TRMM was comparable to CMORPH, and both of them were obviously superior to PERSIANN. The rainy-day detection ability of CMORPH and TRMM was much better than PERSIANN. The PERSIANN data tended to overestimate the light rainy days but underestimate the heavy and torrential rainy days. The CMORPH data overestimated mainly the moderate rainy days. The TRMM data overestimated the occurrence frequency of heavy rain during the winter half year (from October to the next March). Both the CMORPH and the TRMM provided good estimates of the regional average rainy days. The data accuracy of CMORPH was slightly better than TRMM, and both were far better than the PERSIANN with respect to the rainfall amount and rainy-day detection. Nevertheless, all satellite estimates showed large biases of extreme precipitation. The CMORPH estimate of the maximum 5-day precipitation was the best of all. Both the CMORPH and TRMM data overestimated the 95th percentile of precipitation, but the PERSIANN data severely underestimated it. The PERSIANN estimates of extreme precipitation amount were the best of all during the daytime, nighttime, and the whole day. The above evaluation results could facilitate the application of satellite rainfall products and provide a reference to precipitation-related studies.

2021 ◽  
Vol 13 (8) ◽  
pp. 4288
Author(s):  
Siyue Sun ◽  
Guolin Zhang ◽  
Tieguang He ◽  
Shufang Song ◽  
Xingbiao Chu

In recent years, soil degradation and decreasing orchard productivity in the sloping orchards of the Three Gorges Reservoir Area of China have received considerable attention both inside and outside the country. More studies pay attention to the effects of topography on soil property changes, but less research is conducted from the landscape. Therefore, understanding the effects of landscape positions and landscape types on soil properties and chlorophyll content of citrus in a sloping orchard is of great significance in this area. Our results showed that landscape positions and types had a significant effect on the soil properties and chlorophyll content of citrus. The lowest soil nutrient content was detected in the upper slope position and sloping land, while the highest exists at the footslope and terraces. The chlorophyll content of citrus in the middle and upper landscape position was significantly higher than the footslope. The redundancy analysis showed that the first two ordination axes together accounted for 81.32% of the total variation, which could be explained by the changes of soil total nitrogen, total phosphorus, total potassium, available nitrogen, available potassium, organic matter, pH, and chlorophyll content of the citrus. Overall, this study indicates the significant influence of landscape positions and types on soil properties and chlorophyll content of citrus. Further, this study provides a reference for the determination of targeted land management measures and orchard landscape design so that the soil quality and orchard yield can be improved, and finally, the sustainable development of agriculture and ecology can be realized.


Sign in / Sign up

Export Citation Format

Share Document