scholarly journals Study on Aerodynamic Nonlinear Characteristics of Semiclosed Box Deck Based on Variation of Motion Parameters

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Jie Jia ◽  
Haoyang Lu ◽  
Xiaobo Li ◽  
Qian Chen

In order to study the nonlinear characteristics of self-excited aerodynamic forces of bluff body bridge section with the change of motion parameters, a numerical wind tunnel is established by the dynamic mesh technique of computational fluid dynamics (CFD). A state-by-state forced vibration method is used to identify the self-excited aerodynamic forces of single degree-of-freedom (DOF) heaving and pitching motion. Fast Fourier transform (FFT) is adopted to obtain frequency-domain data for analysis. The reliability of the obtained aerodynamic results is verified by wind tunnel tests. The results show that the high-order harmonic components are found in the self-excited aerodynamic forces of semiclosed box deck section, which are more significant in aerodynamic lift than in aerodynamic moment. The proportion of aerodynamic nonlinear components increases with amplitude. The effect of amplitude on the nonlinear components of heaving motion is generally higher than that of pitching motion, and aerodynamic moment is highly sensitive to the increase of vertical amplitude. The variation of the nonlinear components of the deck section with frequency is not a simple monotonic relationship, and there is a stationary point at 10 Hz frequency. The existence of wind attack angle makes the proportion of nonlinear components reach more than 30% and greatly increases the proportion of second harmonic. In addition, the high-order harmonic components, which are not integer multiples, are found at large amplitude and positive angle of attack.

1990 ◽  
Vol 112 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Ting-Nung Shiau ◽  
An-Nan Jean

A numerical-analytical method for the prediction of steady state periodic response of large order nonlinear rotordynamic systems is addressed. Using this method, the set of nonlinear differential equations governing the motion of the rotor systems is transformed to a set of nonlinear algebraic equations. A condensation technique is proposed to reduce the nonlinear algebraic equations to those only related to the physical coordinates associated with nonlinear components. The method allows for the inclusion of searching for sub, super, ultra-sub and ultra-super harmonic components of the system response. Furthermore it can be used to locate limit cycles of an autonomous system. Three examples are employed to demonstrate the accuracy and the efficiency of the present method.


2014 ◽  
Vol 118 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Andreea I. Hadarig ◽  
Carlos Vázquez ◽  
Miguel Fernández ◽  
Samuel Ver Hoeye ◽  
George R. Hotopan ◽  
...  

2003 ◽  
Vol 50 (3-4) ◽  
pp. 375-386
Author(s):  
D. B. MilosÕeviĆ ◽  
W. Becker

Author(s):  
Junji Maeda ◽  
Takashi Takeuchi ◽  
Eriko Tomokiyo ◽  
Yukio Tamura

To quantitatively investigate a gusty wind from the viewpoint of aerodynamic forces, a wind tunnel that can control the rise time of a step-function-like gust was devised and utilized. When the non-dimensional rise time, which is calculated using the rise time of the gusty wind, the wind speed, and the size of an object, is less than a certain value, the wind force is greater than under the corresponding steady wind. Therefore, this wind force is called the “overshoot wind force” for objects the size of orbital vehicles in an actual wind observation. The finding of the overshoot wind force requires a condition of the wind speed recording specification and depends on the object size and the gusty wind speed.


1998 ◽  
Vol 34 (1) ◽  
pp. 114
Author(s):  
Y. Chen ◽  
J. Palmer ◽  
P. Davis ◽  
L. Li

Sign in / Sign up

Export Citation Format

Share Document