scholarly journals Telemetry Data Compression Algorithm Using Balanced Recurrent Neural Network and Deep Learning

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Parameshwaran Ramalingam ◽  
Abolfazl Mehbodniya ◽  
Julian L. Webber ◽  
Mohammad Shabaz ◽  
Lakshminarayanan Gopalakrishnan

Telemetric information is great in size, requiring extra room and transmission time. There is a significant obstruction of storing or sending telemetric information. Lossless data compression (LDC) algorithms have evolved to process telemetric data effectively and efficiently with a high compression ratio and a short processing time. Telemetric information can be packed to control the extra room and association data transmission. In spite of the fact that different examinations on the pressure of telemetric information have been conducted, the idea of telemetric information makes pressure incredibly troublesome. The purpose of this study is to offer a subsampled and balanced recurrent neural lossless data compression (SB-RNLDC) approach for increasing the compression rate while decreasing the compression time. This is accomplished through the development of two models: one for subsampled averaged telemetry data preprocessing and another for BRN-LDC. Subsampling and averaging are conducted at the preprocessing stage using an adjustable sampling factor. A balanced compression interval (BCI) is used to encode the data depending on the probability measurement during the LDC stage. The aim of this research work is to compare differential compression techniques directly. The final output demonstrates that the balancing-based LDC can reduce compression time and finally improve dependability. The final experimental results show that the model proposed can enhance the computing capabilities in data compression compared to the existing methodologies.

Author(s):  
Gody Mostafa ◽  
Abdelhalim Zekry ◽  
Hatem Zakaria

When transmitting the data in digital communication, it is well desired that the transmitting data bits should be as minimal as possible, so many techniques are used to compress the data. In this paper, a Lempel-Ziv algorithm for data compression was implemented through VHDL coding. One of the most lossless data compression algorithms commonly used is Lempel-Ziv. The work in this paper is devoted to improve the compression rate, space-saving, and utilization of the Lempel-Ziv algorithm using a systolic array approach. The developed design is validated with VHDL simulations using Xilinx ISE 14.5 and synthesized on Virtex-6 FPGA chip. The results show that our design is efficient in providing high compression rates and space-saving percentage as well as improved utilization. The Throughput is increased by 50% and the design area is decreased by more than 23% with a high compression ratio compared to comparable previous designs.


Author(s):  
Hui Yang ◽  
Anand Nayyar

: In the fast development of information, the information data is increasing in geometric multiples, and the speed of information transmission and storage space are required to be higher. In order to reduce the use of storage space and further improve the transmission efficiency of data, data need to be compressed. processing. In the process of data compression, it is very important to ensure the lossless nature of data, and lossless data compression algorithms appear. The gradual optimization design of the algorithm can often achieve the energy-saving optimization of data compression. Similarly, The effect of energy saving can also be obtained by improving the hardware structure of node. In this paper, a new structure is designed for sensor node, which adopts hardware acceleration, and the data compression module is separated from the node microprocessor.On the basis of the ASIC design of the algorithm, by introducing hardware acceleration, the energy consumption of the compressed data was successfully reduced, and the proportion of energy consumption and compression time saved by the general-purpose processor was as high as 98.4 % and 95.8 %, respectively. It greatly reduces the compression time and energy consumption.


2010 ◽  
Vol 56 (4) ◽  
pp. 351-355
Author(s):  
Marcin Rodziewicz

Joint Source-Channel Coding in Dictionary Methods of Lossless Data Compression Limitations on memory and resources of communications systems require powerful data compression methods. Decompression of compressed data stream is very sensitive to errors which arise during transmission over noisy channels, therefore error correction coding is also required. One of the solutions to this problem is the application of joint source and channel coding. This paper contains a description of methods of joint source-channel coding based on the popular data compression algorithms LZ'77 and LZSS. These methods are capable of introducing some error resiliency into compressed stream of data without degradation of the compression ratio. We analyze joint source and channel coding algorithms based on these compression methods and present their novel extensions. We also present some simulation results showing usefulness and achievable quality of the analyzed algorithms.


Author(s):  
Sanjana Rao ◽  
Vidyashree T S ◽  
Manasa M ◽  
Bindushree V ◽  
C. Gururaj

Sign in / Sign up

Export Citation Format

Share Document