A porosity result in convex minimization
Keyword(s):
We study the minimization problemf(x)→min,x∈C, wherefbelongs to a complete metric spaceℳof convex functions and the setCis a countable intersection of a decreasing sequence of closed convex setsCiin a reflexive Banach space. Letℱbe the set of allf∈ℳfor which the solutions of the minimization problem over the setCiconverge strongly asi→∞to the solution over the setC. In our recent work we show that the setℱcontains an everywhere denseGδsubset ofℳ. In this paper, we show that the complementℳ\ℱis not only of the first Baire category but also aσ-porous set.
2021 ◽
Vol 151
(6)
◽
pp. 1683-1699
2018 ◽
Vol 62
(4)
◽
pp. 391-397
◽
Keyword(s):
2004 ◽
Vol 70
(3)
◽
pp. 463-468
◽
Keyword(s):
2003 ◽
Vol 2003
(11)
◽
pp. 651-670
◽
2021 ◽
Vol 26
(2)
◽
pp. 271-292
2011 ◽
Vol 54
(3)
◽
pp. 645-667
1997 ◽
Vol 63
(2)
◽
pp. 238-262
◽
2004 ◽
Vol 2004
(8)
◽
pp. 691-721
◽
2001 ◽
Vol 33
(6)
◽
pp. 711-714
◽
Keyword(s):