scholarly journals On bandlimited signals with minimal product of effective spatial and spectral widths

2005 ◽  
Vol 2005 (10) ◽  
pp. 1589-1599 ◽  
Author(s):  
Y. V. Venkatesh ◽  
S. Kumar Raja ◽  
G. Vidya Sagar

It is known that signals (which could be functions ofspaceortime) belonging to𝕃2-space cannot be localized simultaneously in space/time and frequency domains. Alternatively, signals have a positive lower bound on theproductof theireffective spatial andeffective spectral widths, for simplicity, hereafter called theeffective space-bandwidthproduct(ESBP). This is the classical uncertainty inequality (UI), attributed to many, but, from a signal processing perspective, to Gabor who, in his seminal paper, established the uncertainty relation and proposed a joint time-frequency representation in which the basis functions have minimal ESBP. It is found that the Gaussian function is the only signal that has thelowestESBP. Since the Gaussian function is not bandlimited, no bandlimited signal can have the lowest ESBP. We deal with the problem of determining finite-energy, bandlimited signals which have the lowest ESBP. The main result is as follows. By choosing the convolution product of a Gaussian signal (withσas the variance parameter) and a bandlimited filter with a continuous spectrum, we demonstrate that there exists a finite-energy, bandlimited signal whose ESBP can be made to be arbitrarily close (dependent on the choice ofσ) to the optimal value specified by the UI.

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document