scholarly journals Laguerre-type Bell polynomials

Author(s):  
P. Natalini ◽  
P. E. Ricci

We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute thenth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.

Author(s):  
Even Mehlum ◽  
Jet Wimp

AbstractWe show that the position vector of any 3-space curve lying on a sphere satisfies a third-order linear (vector) differential equation whose coefficients involve a single arbitrary function A(s). By making various identifications of A(s), we are led to nonlinear identities for a number of higher transcendental functions: Bessel functions, Horn functions, generalized hypergeometric functions, etc. These can be considered natural geometrical generalizations of sin2t + cos2t = 1. We conclude with some applications to the theory of splines.


1995 ◽  
Vol 8 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Harold Exton

Certain formal series of a most general nature are specialized so as to deduce expansions in terms of a class of generalized hypergeometric functions. These series generalize the Neumann and Kapteyn series in the theory of Bessel functions, and their convergence is investigated. An example of a succinct expansion is also given.


2018 ◽  
Vol 21 (5) ◽  
pp. 1360-1376
Author(s):  
Dmitrii B. Karp ◽  
José L. López

Abstract In this paper we investigate the extension of the multiple Erdélyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer’s G-function. An action of the regularized multiple Erdélyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we define an alternative regularization better suited for representing the Bessel type generalized hypergeometric function p−1Fp. A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Yan Wang ◽  
Muhammet Cihat Dağli ◽  
Xi-Min Liu ◽  
Feng Qi

In the paper, by virtue of the Faà di Bruno formula, with the aid of some properties of the Bell polynomials of the second kind, and by means of a general formula for derivatives of the ratio between two differentiable functions, the authors establish explicit, determinantal, and recurrent formulas for generalized Eulerian polynomials.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
W. M. Abd-Elhameed

This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document