scholarly journals Constructing Banaschewski compactification without Dedekind completeness axiom

2004 ◽  
Vol 2004 (69) ◽  
pp. 3799-3816
Author(s):  
S. K. Acharyya ◽  
K. C. Chattopadhyay ◽  
Partha Pratim Ghosh

The main aim of this paper is to provide a construction of the Banaschewski compactification of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered field-valued continuous functions on the space, and thereby exhibit the independence of the construction from any completeness axiom for an ordered field. In the process of describing this construction we have generalized the classical versions of M. H. Stone's theorem, the Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional Hausdorff topological spaces into three classes that are labeled by inequalities between three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski compactificationβ0X, and the structure space𝔐X,Fof the lattice-ordered commutative ringℭ(X,F)of all continuous functions onXtaking values in the ordered fieldF, equipped with its order topology. Some open problems are also stated.

2001 ◽  
Vol 63 (3) ◽  
pp. 475-484
Author(s):  
Jesús Araujo ◽  
Krzysztof Jarosz

By the classical Banach-Stone Theorem any surjective isometry between Banach spaces of bounded continuous functions defined on compact sets is given by a homeomorphism of the domains. We prove that the same description applies to isometries of metric spaces of unbounded continuous functions defined on non compact topological spaces.


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


1995 ◽  
Vol 18 (4) ◽  
pp. 701-704
Author(s):  
Parfeny P. Saworotnow

Stone Theorem about representing a Boolean algebra in terms of open-closed subsets of a topological space is a consequence of the Gelfand Theorem about representing aB∗- algebra as the algebra of continuous functions on a compact Hausdorff space.


2011 ◽  
Vol 10 (04) ◽  
pp. 687-699
Author(s):  
OTHMAN ECHI ◽  
MOHAMED OUELD ABDALLAHI

An open subset U of a topological space X is called intersection compact open, or ICO, if for every compact open set Q of X, U ∩ Q is compact. A continuous map f of topological spaces will be called spectral if f-1 carries ICO sets to ICO sets. Call a topological space Xhemispectral, if the intersection of two ICO sets of X is an ICO. Let HSPEC be the category whose objects are hemispectral spaces and arrows spectral maps. Let SPEC be the full subcategory of HSPEC whose objects are spectral spaces. The main result of this paper proves that SPEC is a reflective subcategory of HSPEC. This gives a complete answer to Problem BST1 of "O. Echi, H. Marzougui and E. Salhi, Problems from the Bizerte–Sfax–Tunis seminar, in Open Problems in Topology II, ed. E. Pearl (Elsevier, 2007), pp. 669–674."


2020 ◽  
pp. 96-104
Author(s):  
admin admin ◽  
◽  
◽  
◽  
M M.Karthika ◽  
...  

The notion of fuzzy sets initiated to overcome the uncertainty of an object. Fuzzy topological space, in- tuitionistic fuzzy sets in topological structure space, vagueness in topological structure space, rough sets in topological space, theory of hesitancy and neutrosophic topological space, etc. are the extension of fuzzy sets. Soft set is a family of parameters which is also a set. Fuzzy soft topological space, intuitionistic fuzzy soft and neutrosophic soft topological space are obtained by incorporating soft sets with various topological structures. This motivates to write a review and study on various soft set concepts. This paper shows the detailed review of soft topological spaces in various sets like fuzzy, Intuitionistic fuzzy set and neutrosophy. Eventually, we compared some of the existing tools in the literature for easy understanding and exhibited their advantages and limitations.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1614
Author(s):  
Samer Al Ghour ◽  
Enas Moghrabi

Via co-compact open sets we introduce co-T2 as a new topological property. We show that this class of topological spaces strictly contains the class of Hausdorff topological spaces. Using compact sets, we characterize co-T2 which forms a symmetry. We show that co-T2 propoerty is preserved by continuous closed injective functions. We show that a closed subspace of a co-T2 topological space is co-T2. We introduce co-regularity as a weaker form of regularity, s-regularity as a stronger form of regularity and co-normality as a weaker form of normality. We obtain several characterizations, implications, and examples regarding co-regularity, s-regularity and co-normality. Moreover, we give several preservation theorems under slightly coc-continuous functions.


1973 ◽  
Vol 16 (2) ◽  
pp. 146-166 ◽  
Author(s):  
Kenneth D. Magill

To each idempotent v of a semigroup T, there is associated, in a natural way, a subsemigroup Tv of T. The subsemigroup Tv is simply the collection of all elements of T for which v acts as a two-sided identity. We refer to such a subsemigroup as an I-subsemigroup of T. We first establish some elementary properties of these subsemigroups with no restrictions on the semigroup in which they are contained. Then we turn our attention to the semigroup of all continuous selfmaps of a topological space. The I-subsemigroups of these semigroups are investigated in some detail and so are the a-monomorphisms [3, p. 518] from one such semigroup into another. Among other things, a relationship is established between I-subsemigroups and α-monomorphisms. An analogous theory exists for semigroups of closed selfmaps on topological spaces. A number of results are listed for these semigroups with the proofs often deleted since, in many cases, the situation is much the same as for semigroups of continuous functions.


1996 ◽  
Vol 39 (3) ◽  
pp. 316-329
Author(s):  
K. D. Magill

AbstractLet λ be a map from the additive Euclidean n-group Rn into the space R of real numbers and define a multiplication * on Rn by v * w = (λ(w))v. Then (Rn, + , *) is a topological nearring if and only if λ is continuous and λ(av) = aλ(v) for every v € Rn and every a in the range of λ. For any such map λ and any topological space X we denote by Nλ(X, Rn) the nearring of all continuous functions from X into (Rn, +, *) where the operations are pointwise. The ideals of Nλ(X, Rn) are investigated in some detail for certain λ and the results obtained are used to prove that two compact Hausdorff spaces X and Y are homeomorphic if and only if the nearrings Nλ(X, Rn) and Nλ(Y, Rn) are isomorphic.


Sign in / Sign up

Export Citation Format

Share Document