scholarly journals Co-Compact Separation Axioms and Slight Co-Continuity

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1614
Author(s):  
Samer Al Ghour ◽  
Enas Moghrabi

Via co-compact open sets we introduce co-T2 as a new topological property. We show that this class of topological spaces strictly contains the class of Hausdorff topological spaces. Using compact sets, we characterize co-T2 which forms a symmetry. We show that co-T2 propoerty is preserved by continuous closed injective functions. We show that a closed subspace of a co-T2 topological space is co-T2. We introduce co-regularity as a weaker form of regularity, s-regularity as a stronger form of regularity and co-normality as a weaker form of normality. We obtain several characterizations, implications, and examples regarding co-regularity, s-regularity and co-normality. Moreover, we give several preservation theorems under slightly coc-continuous functions.

Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 1775-1783
Author(s):  
Islam Taha

In this paper, a new form of separation axioms called r-fuzzy soft Ti;(i = 0,1,2,3,4), r-fuzzy soft regular and r-fuzzy soft normal axioms are introduced in a fuzzy soft topological space based on the paper Ayg?no?lu et al. [7]. Also, the relations of these axioms with each other are investigated with the help of examples. Furthermore, some fuzzy soft invariance properties, namely fuzzy soft topological property and hereditary property are specified.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Amit Kumar Singh ◽  
Rekha Srivastava

In this paper we have studied separation axiomsTi,i=0,1,2in an intuitionistic fuzzy topological space introduced by Coker. We also show the existence of functorsℬ:IF-Top→BF-Topand𝒟:BF-Top→IF-Topand observe that𝒟is left adjoint toℬ.


2021 ◽  
Vol 13 (2) ◽  
pp. 483-493
Author(s):  
Ritu Sen

Abstract In this paper our main interest is to introduce a new type of generalized open sets defined in terms of an operation on a generalized topological space. We have studied some properties of this newly defined sets. As an application, we have introduced some weak separation axioms and discussed some of their properties. Finally, we have studied some preservation theorems in terms of some irresolute functions.


2001 ◽  
Vol 63 (3) ◽  
pp. 475-484
Author(s):  
Jesús Araujo ◽  
Krzysztof Jarosz

By the classical Banach-Stone Theorem any surjective isometry between Banach spaces of bounded continuous functions defined on compact sets is given by a homeomorphism of the domains. We prove that the same description applies to isometries of metric spaces of unbounded continuous functions defined on non compact topological spaces.


1991 ◽  
Vol 14 (2) ◽  
pp. 309-314 ◽  
Author(s):  
M. N. Mukherjee ◽  
S. P. Sinha

The paper contains a study of fuzzyθ-closure operator,θ-closures of fuzzy sets in a fuzzy topological space are characterized and some of their properties along with their relation with fuzzyδ-closures are investigated. As applications of these concepts, certain functions as well as some spaces satisfying certain fuzzy separation axioms are characterized in terms of fuzzyθ-closures andδ-closures.


2004 ◽  
Vol 2004 (69) ◽  
pp. 3799-3816
Author(s):  
S. K. Acharyya ◽  
K. C. Chattopadhyay ◽  
Partha Pratim Ghosh

The main aim of this paper is to provide a construction of the Banaschewski compactification of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered field-valued continuous functions on the space, and thereby exhibit the independence of the construction from any completeness axiom for an ordered field. In the process of describing this construction we have generalized the classical versions of M. H. Stone's theorem, the Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional Hausdorff topological spaces into three classes that are labeled by inequalities between three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski compactificationβ0X, and the structure space𝔐X,Fof the lattice-ordered commutative ringℭ(X,F)of all continuous functions onXtaking values in the ordered fieldF, equipped with its order topology. Some open problems are also stated.


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2016 ◽  
Vol 4 (2) ◽  
pp. 151-159
Author(s):  
D Anabalan ◽  
Santhi C

The purpose of this paper is to introduce and study some new class of definitions like µ-point closure and gµ –regular space concerning generalized topological space. We obtain some characterizations and several properties of such definitions. This paper takes some investigations on generalized topological spaces with gµ –closed sets and gµ–closed sets.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


Sign in / Sign up

Export Citation Format

Share Document