scholarly journals Convergence and stability of the three-step iterative schemes for a class of general quasivariational-like inequalities

2004 ◽  
Vol 2004 (70) ◽  
pp. 3849-3857
Author(s):  
Zeqing Liu ◽  
Zhefu An ◽  
Shin Min Kang ◽  
Jeong Sheok Ume

We introduce and study a class of general quasivariational-like inequalities in Hilbert spaces, suggest two general algorithms, and establish the existence and uniqueness of solutions for these kinds of inequalities. Under certain conditions, we discuss convergence and stability of the three-step iterative sequences generated by the algorithms.

Author(s):  
Kai Diethelm ◽  
Konrad Kitzing ◽  
Rainer Picard ◽  
Stefan Siegmund ◽  
Sascha Trostorff ◽  
...  

AbstractWe study fractional differential equations of Riemann–Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces of functions defined on $${\mathbb {R}}$$ R , we define fractional operators by means of a functional calculus using the Fourier transform. Main tools are extrapolation- and interpolation spaces. Main results are the existence and uniqueness of solutions and the causality of solution operators for non-linear fractional differential equations.


2003 ◽  
Vol 10 (3) ◽  
pp. 467-480
Author(s):  
Igor Chudinovich ◽  
Christian Constanda

Abstract The existence of distributional solutions is investigated for the time-dependent bending of a plate with transverse shear deformation under mixed boundary conditions. The problem is then reduced to nonstationary boundary integral equations and the existence and uniqueness of solutions to the latter are studied in appropriate Sobolev spaces.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alberto Cabada ◽  
Om Kalthoum Wanassi

Abstract This paper is devoted to study the existence and uniqueness of solutions of a one parameter family of nonlinear Riemann–Liouville fractional differential equations with mixed boundary value conditions. An exhaustive study of the sign of the related Green’s function is carried out. Under suitable assumptions on the asymptotic behavior of the nonlinear part of the equation at zero and at infinity, and by application of the fixed point theory of compact operators defined in suitable cones, it is proved that there exists at least one solution of the considered problem. Moreover, the method of lower and upper solutions is developed and the existence of solutions is deduced by a combination of both techniques. In particular cases, the Banach contraction principle is used to ensure the uniqueness of solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1431
Author(s):  
Bilal Basti ◽  
Nacereddine Hammami ◽  
Imadeddine Berrabah ◽  
Farid Nouioua ◽  
Rabah Djemiat ◽  
...  

This paper discusses and provides some analytical studies for a modified fractional-order SIRD mathematical model of the COVID-19 epidemic in the sense of the Caputo–Katugampola fractional derivative that allows treating of the biological models of infectious diseases and unifies the Hadamard and Caputo fractional derivatives into a single form. By considering the vaccine parameter of the suspected population, we compute and derive several stability results based on some symmetrical parameters that satisfy some conditions that prevent the pandemic. The paper also investigates the problem of the existence and uniqueness of solutions for the modified SIRD model. It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuqi Wang ◽  
Zhanbing Bai

AbstractIn this article, the existence and uniqueness of solutions for a multi-point fractional boundary value problem involving two different left and right fractional derivatives with p-Laplace operator is studied. A novel approach is used to acquire the desired results, and the core of the method is Banach contraction mapping principle. Finally, an example is given to verify the results.


Sign in / Sign up

Export Citation Format

Share Document