scholarly journals On the frictionless unilateral contact of two viscoelastic bodies

2003 ◽  
Vol 2003 (11) ◽  
pp. 575-603 ◽  
Author(s):  
M. Barboteu ◽  
T.-V. Hoarau-Mantel ◽  
M. Sofonea

We consider a mathematical model which describes the quasistatic contact between two deformable bodies. The bodies are assumed to have a viscoelastic behavior that we model with Kelvin-Voigt constitutive law. The contact is frictionless and is modeled with the classical Signorini condition with zero-gap function. We derive a variational formulation of the problem and prove the existence of a unique weak solution to the model by using arguments of evolution equations with maximal monotone operators. We also prove that the solution converges to the solution of the corresponding elastic problem, as the viscosity tensors converge to zero. We then consider a fully discrete approximation of the problem, based on the augmented Lagrangian approach, and present numerical results of two-dimensional test problems.

2019 ◽  
Vol 52 (1) ◽  
pp. 274-282
Author(s):  
Behzad Djafari Rouhani ◽  
Mohsen Rahimi Piranfar

AbstractWe consider the following second order evolution equation modelling a nonlinear oscillator with damping$$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A−1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we consider the following second order difference equation$${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].


2021 ◽  
Vol 26 (6) ◽  
pp. 1144-1165
Author(s):  
Emilio Vilches ◽  
Shengda Zeng

In this paper, we propose a new methodology to study evolutionary variational-hemivariational inequalities based on the theory of evolution equations governed by maximal monotone operators. More precisely, the proposed approach, based on a hidden maximal monotonicity, is used to explore the well-posedness for a class of evolutionary variational-hemivariational inequalities involving history-dependent operators and related problems with periodic and antiperiodic boundary conditions. The applicability of our theoretical results is illustrated through applications to a fractional evolution inclusion and a dynamic semipermeability problem.


2001 ◽  
Vol 25 (4) ◽  
pp. 273-287 ◽  
Author(s):  
A. Addou ◽  
B. Mermri

We are interested in constructing a topological degree for operators of the formF=L+A+S, whereLis a linear densely defined maximal monotone map,Ais a bounded maximal monotone operators, andSis a bounded demicontinuous map of class(S+)with respect to the domain ofL. By means of this topological degree we prove an existence result that will be applied to give a new formulation of a parabolic variational inequality problem.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
Jérôme Bastien ◽  
Claude-Henri Lamarque

A chain sliding on a fixed support, made out of some elementary rheological models (dry friction element and linear spring) can be covered by the existence and uniqueness theory for maximal monotone operators. Several behavior from quasistatic to dynamical are investigated. Moreover, classical results of numerical analysis allow to use a numerical implicit Euler scheme.


Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


Sign in / Sign up

Export Citation Format

Share Document