scholarly journals Expression of mucin-1 and mucin-2 in different types of gastric lesions

2013 ◽  
Vol 21 (29) ◽  
pp. 3112
Author(s):  
Xiao-Qiang Cui ◽  
Man Jiang ◽  
Quan-Jiang Dong ◽  
Yu-Qiang Gao ◽  
Xiang-Jun Xie ◽  
...  
Cancer ◽  
1986 ◽  
Vol 58 (2) ◽  
pp. 376-382 ◽  
Author(s):  
Rolf Jorde ◽  
Harald Østensen ◽  
Leif H. Bostad ◽  
Per G. Burhol ◽  
Frøydis T. Langmark

1979 ◽  
Vol 181 (3) ◽  
pp. 725-732 ◽  
Author(s):  
Janet F. Forstner ◽  
Inderjit Jabbal ◽  
Rauf Qureshi ◽  
David I. C. Kells ◽  
Gordon G. Forstner

Goblet-cell mucin (mucin 1) was isolated and purified from human small-intestinal scrapings. After application of mucin 1 to DEAE-Bio-Gel (A) columns, most of the glycoprotein (76–94% of hexoses) was eluted in the first peak (designated mucin 2). Minor amounts of acidic glycoproteins were eluted with 0.2m- and 0.4m-NaCl in later peaks. Analyses of mucin 1 and mucin 2 revealed mucin 2 to be a monodisperse highly glycosylated glycoprotein containing 6.3% by wt. of protein, N-acetylgalactosamine, N-acetylglucosamine, galactose and fucose. Mucin 1 was similar in composition, but was polydisperse and contained more protein (12.3% by wt.) as well as N-acetylneuraminic acid. Analytical CsCl-gradient ultracentrifugation showed both mucin 1 and mucin 2 to have a major component with an average buoyant density of 1.47000g/ml. Mucin 1 also contained a slightly less-dense minor glycoprotein component. After exhaustive reduction and alkylation mucin 1 retained its major component, but partly dissociated into two lighter glycoprotein components. Mucin 2, in contrast, did not change its density distribution after reduction. Band ultracentrifugation in 2H2O-containing iso-osmotic buffers showed that mucin 1 contained a major fast-sedimenting component (so=37±2S), and a minor amount of a slower-sedimenting component. After reduction there was an increased quantity of the latter component, for which an so value of 14.5S was calculated. In contrast, mucin 2 was unaltered by reduction (so=33±2S). These findings indicate that the major component of goblet-cell mucin (mucin 2) does not dissociate after S–S-bond reduction, and thus does not apparently rely for its polymeric structure on the association of subunits through covalent disulphide bonds. However, the effects of reduction on mucin 1 suggest that in the native mucin intramolecular disulphide bonds in the minor glycoproteins may stabilize their structure, permitting secondary non-covalent interactions to develop with the major dense mucin (mucin 2) protein.


2019 ◽  
Vol 44 (7) ◽  
pp. 511-521
Author(s):  
Christopher Kennel ◽  
Elizabeth A Gould ◽  
Eric D Larson ◽  
Ernesto Salcedo ◽  
Thad Vickery ◽  
...  

Abstract Mucins are a key component of the surface mucus overlying airway epithelium. Given the different functions of the olfactory and respiratory epithelia, we hypothesized that mucins would be differentially expressed between these 2 areas. Secondarily, we evaluated for potential changes in mucin expression with radiation exposure, given the clinical observations of nasal dryness, altered mucus rheology, and smell loss in radiated patients. Immunofluorescence staining was performed to evaluate expression of mucins 1, 2, 5AC, and 5B in nasal respiratory and olfactory epithelia of control mice and 1 week after exposure to 8 Gy of radiation. Mucins 1, 5AC, and 5B exhibited differential expression patterns between olfactory and respiratory epithelium (RE) while mucin 2 showed no difference. In the olfactory epithelium (OE), mucin 1 was located in a lattice-like pattern around gaps corresponding to dendritic knobs of olfactory sensory neurons, whereas in RE it was intermittently expressed by surface goblet cells. Mucin 5AC was expressed by subepithelial glands in both epithelial types but to a higher degree in the OE. Mucin 5B was expressed by submucosal glands in OE and by surface epithelial cells in RE. At 1-week after exposure to single-dose 8 Gy of radiation, no qualitative effects were seen on mucin expression. Our findings demonstrate that murine OE and RE express mucins differently, and characteristic patterns of mucins 1, 5AC, and 5B can be used to define the underlying epithelium. Radiation (8 Gy) does not appear to affect mucin expression at 1 week. Level of Evidence N/A (Basic Science Research). IACUC-approved study [Protocol 200065].


2018 ◽  
Vol 24 (36) ◽  
pp. 4164-4177 ◽  
Author(s):  
Aldona Kasprzak ◽  
Elżbieta Siodła ◽  
Małgorzata Andrzejewska ◽  
Jacek Szmeja ◽  
Agnieszka Seraszek-Jaros ◽  
...  

2019 ◽  
Author(s):  
Christopher Kennel ◽  
Elizabeth A. Gould ◽  
Eric D. Larson ◽  
Ernesto Salcedo ◽  
Thad W. Vickery ◽  
...  

AbstractMucins are a key component of the airway surface liquid and serve many functions. Given the numerous differences in olfactory versus respiratory nasal epithelia, we hypothesized that mucins would be differentially expressed between these two areas. Secondarily, we evaluated for changes in mucin expression with radiation exposure, given the clinical observations of nasal dryness, altered mucus rheology, and smell loss in radiated patients. Immunofluorescence staining was performed in a mouse model to determine the expression of mucins 1, 2, 5AC and 5B in nasal respiratory and olfactory epithelia of control mice and one week after exposure to 8 gy of radiation. Mucins 1, 5AC and 5B exhibited differential expression between olfactory and respiratory epithelium while mucin 2 showed no difference. Within the olfactory epithelium, mucin 1 was located in a lattice-like pattern around gaps corresponding to dendritic knobs of olfactory sensory neurons, whereas in respiratory epithelium it was only intermittently expressed. Mucin 5AC was expressed by subepithelial glands in both epithelial types but to a higher degree in the olfactory epithelium. Mucin 5B was expressed by submucosal glands in the olfactory epithelium but by surface epithelial cells in respiratory epithelium. At one-week after exposure to single-dose 8 gy of radiation, no qualitative effects were seen on mucin expression. Our findings demonstrate that murine olfactory and respiratory epithelia express mucins differently, and characteristic patterns of mucins 1, 5AC, and 5B can be used to define the underlying epithelium. Radiation (8 gy) does not appear to affect mucin expression at one week.Author RolesChristopher Kennel conceived, organized and executed the study, performed the analysis, and contributed to the manuscript.Elizabeth Gould conceived and executed the study, and contributed to the manuscript.Diego Restrepo conceived and executed the study, supervised the experiments, reviewed the analysis, and contributed to the manuscript.Ernesto Salcedo performed experiments and reviewed the manuscript.Thad Vickery performed experiments and reviewed the manuscript.Eric Larson performed experiments and reviewed the manuscript.Vijay Ramakrishnan conceived and executed the study, reviewed the analysis, and contributed to the manuscript.All authors discussed the results and implications and contributed to the final manuscript.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 43 ◽  
Author(s):  
Rajen A. Anderson ◽  
Benjamin C. Ruisch ◽  
David A. Pizarro

Abstract We argue that Tomasello's account overlooks important psychological distinctions between how humans judge different types of moral obligations, such as prescriptive obligations (i.e., what one should do) and proscriptive obligations (i.e., what one should not do). Specifically, evaluating these different types of obligations rests on different psychological inputs and has distinct downstream consequences for judgments of moral character.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Sign in / Sign up

Export Citation Format

Share Document