scholarly journals Low-Level Expression of Proapoptotic Bcl-2–Interacting Mediator in Leukemic Cells in Patients with Chronic Myeloid Leukemia: Role of BCR/ABL, Characterization of Underlying Signaling Pathways, and Reexpression by Novel Pharmacologic Compounds

2005 ◽  
Vol 65 (20) ◽  
pp. 9436-9444 ◽  
Author(s):  
Karl J. Aichberger ◽  
Matthias Mayerhofer ◽  
Maria-Theresa Krauth ◽  
Anja Vales ◽  
Rudin Kondo ◽  
...  
Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Mie Nieda ◽  
Andrew Nicol ◽  
Akiko Kikuchi ◽  
Koichi Kashiwase ◽  
Kerry Taylor ◽  
...  

The role of T lymphocytes in the control of chronic myeloid leukemia (CML) after bone marrow transplantations has been clearly shown. This effect closely correlates with graft-versus-host disease (GVHD). A specific graft-versus-leukemia (GVL) effect separate from GVHD has been postulated but has been difficult to show. One possible target for specific GVL activity is the bcr-abl fusion protein characteristic of CML. We have investigated the use of normal peptide-pulsed dendritic cells for the generation of cytotoxic, bcr-abl–specific T cells from normal donors. T cells (CD3+, CD8+, TCRαβ+, and NK receptor-negative) generated from a normal donor (HLA A24, B52, B59, Cw1) after stimulation with autologous dendritic cells, primed with a 16 mer peptide spanning the b3a2 breakpoint of bcr-abl, lysed CML cells from the peripheral blood of seven patients with CML with the b3a2 breakpoint. CML cells from four patients with only the b2a2 breakpoint were not lysed. Phytohemagglutinin (PHA) blasts derived from peripheral blood of patients with CML were not lysed, suggesting that cytotoxicity was not due to alloreactivity. Blocking experiments with anti–HLA-A,B,C indicated that cytotoxicity was dependent on recognition of major histocompatibility complex (MHC) class I molecules, although cytotoxicity was not MHC-restricted because not all patients shared HLA types with the T-cell donor. Specificity for bcr-abl and absence of alloreactivity was confirmed by the presence of lytic activity against autologous and allogeneic class I HLA-A matched monocytes pulsed with the 16 mer bcr-abl fusion peptide, but not against unpulsed monocytes or monocytes pulsed with other peptides. These results show that bcr-abl–specific T cells with marked cytotoxic activity against CML cells can be generated and amplified from normal donor peripheral blood. Recognition of HLA molecules is essential for cytotoxicity but strict HLA identity is not required.


Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Mie Nieda ◽  
Andrew Nicol ◽  
Akiko Kikuchi ◽  
Koichi Kashiwase ◽  
Kerry Taylor ◽  
...  

Abstract The role of T lymphocytes in the control of chronic myeloid leukemia (CML) after bone marrow transplantations has been clearly shown. This effect closely correlates with graft-versus-host disease (GVHD). A specific graft-versus-leukemia (GVL) effect separate from GVHD has been postulated but has been difficult to show. One possible target for specific GVL activity is the bcr-abl fusion protein characteristic of CML. We have investigated the use of normal peptide-pulsed dendritic cells for the generation of cytotoxic, bcr-abl–specific T cells from normal donors. T cells (CD3+, CD8+, TCRαβ+, and NK receptor-negative) generated from a normal donor (HLA A24, B52, B59, Cw1) after stimulation with autologous dendritic cells, primed with a 16 mer peptide spanning the b3a2 breakpoint of bcr-abl, lysed CML cells from the peripheral blood of seven patients with CML with the b3a2 breakpoint. CML cells from four patients with only the b2a2 breakpoint were not lysed. Phytohemagglutinin (PHA) blasts derived from peripheral blood of patients with CML were not lysed, suggesting that cytotoxicity was not due to alloreactivity. Blocking experiments with anti–HLA-A,B,C indicated that cytotoxicity was dependent on recognition of major histocompatibility complex (MHC) class I molecules, although cytotoxicity was not MHC-restricted because not all patients shared HLA types with the T-cell donor. Specificity for bcr-abl and absence of alloreactivity was confirmed by the presence of lytic activity against autologous and allogeneic class I HLA-A matched monocytes pulsed with the 16 mer bcr-abl fusion peptide, but not against unpulsed monocytes or monocytes pulsed with other peptides. These results show that bcr-abl–specific T cells with marked cytotoxic activity against CML cells can be generated and amplified from normal donor peripheral blood. Recognition of HLA molecules is essential for cytotoxicity but strict HLA identity is not required.


2020 ◽  
Vol 7 (2) ◽  
pp. 205-211
Author(s):  
Kaynat Fatima ◽  
Syed Tasleem Raza ◽  
Ale Eba ◽  
Sanchita Srivastava ◽  
Farzana Mahdi

The function of protein kinases is to transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are linked to the initiation and development of human cancer. The recent development of small molecule kinase inhibitors for the treatment of different types of cancer in clinical therapy has proven successful. Significantly, after the G-protein-coupled receptors, protein kinases are the second most active category of drug targets. Imatinib mesylate was the first tyrosine kinase inhibitor (TKI), approved for chronic myeloid leukemia (CML) treatment. Imatinib induces appropriate responses in ~60% of patients; with ~20% discontinuing therapy due to sensitivity, and ~20% developing drug resistance. The introduction of newer TKIs such as, nilotinib, dasatinib, bosutinib, and ponatinib has provided patients with multiple options. Such agents are more active, have specific profiles of side effects and are more likely to reach the necessary milestones. First-line treatment decisions must be focused on CML risk, patient preferences and comorbidities. Given the excellent result, half of the patients eventually fail to seek first-line treatment (due to discomfort or resistance), with many of them needing a third or even further therapy lines. In the present review, we will address the role of tyrosine kinase inhibitors in therapy for chronic myeloid leukemia.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 445
Author(s):  
Daniela Zizioli ◽  
Simona Bernardi ◽  
Marco Varinelli ◽  
Mirko Farina ◽  
Luca Mignani ◽  
...  

Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 873-876 ◽  
Author(s):  
TS Ganesan ◽  
GL Min ◽  
JM Goldman ◽  
BD Young

Abstract Four patients with Philadelphia (Ph′) positive chronic myeloid leukemia (CML) were studied before, after, and on relapse following allogeneic bone marrow transplantation (BMT). Southern analysis of DNA from cells collected before and at relapse after BMT was performed in order to investigate the origin of the leukemia at relapse. Using minisatellite probes we showed that the relapse occurred in cells of host origin in all four patients and this was confirmed with a Y chromosome specific probe in two male patients who had a female donor. Furthermore, using two probes for the breakpoint cluster region (bcr) on chromosome 22, we showed that leukemic cells at relapse bore identical rearrangements to those in the disease at time of presentation of each patient. We conclude that relapse in all four patients is due to re-emergence of the original leukemic clone.


Gene ◽  
2019 ◽  
Vol 683 ◽  
pp. 195-209 ◽  
Author(s):  
Ge Li ◽  
Ke Wang ◽  
Yue Li ◽  
Jinging Ruan ◽  
Cong Wang ◽  
...  

Author(s):  
Paolo de Fabritiis ◽  
Rita Pinto ◽  
Giovanna Meloni ◽  
Enrico Montefusco ◽  
Giuliana Alimena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document