scholarly journals A novel agonistic antibody to human death receptor 4 induces apoptotic cell death in various tumor cells without cytotoxicity in hepatocytes

2009 ◽  
Vol 8 (8) ◽  
pp. 2276-2285 ◽  
Author(s):  
Eun-Sil Sung ◽  
Kyung-Jin Park ◽  
Seung-Hyun Lee ◽  
Yoon-Seon Jang ◽  
Sang-Koo Park ◽  
...  
2018 ◽  
Vol 420 ◽  
pp. 210-227 ◽  
Author(s):  
Jing Ye ◽  
Ruonan Zhang ◽  
Fan Wu ◽  
Lijuan Zhai ◽  
Kaifeng Wang ◽  
...  

2018 ◽  
Vol 94 (5) ◽  
pp. 1246-1255 ◽  
Author(s):  
Sean T. Campbell ◽  
Caroline E. Franks ◽  
Adam L. Borne ◽  
Myungsun Shin ◽  
Liuzhi Zhang ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 1036-1037
Author(s):  
M. C. Willingham

Several clinically important anti-cancer agents exert their effects on tumor cells through interference with the function of microtubules. In addition to the Vinca alkaloids, such as vinblastine and vincristine, the taxanes, such as paclitaxel (Trade Name: Taxol), kill tumor cells through a microtubular target. Treatment with taxol leads to the inability of microtubules to depolymerize, leading to the formation of large intracellular microtubular bundles. In tumor cells that progress through the cell cycle, this leads to the inability of these cells to disassembly interphase microtubule networks and a failure to form functional mitotic spindles. These cells arrest in M phase, from which they eventually progress, either by the induction of apoptotic cell death, or by micronucleation and the formation of tetraploid cells. There is also the possibility that taxol has other effects on the regulation of genes or other systems to enhance cell killing, perhaps through lowering the threshold of cells to the induction of apoptotic cell death.


2006 ◽  
Vol 340 (2) ◽  
pp. 560-566 ◽  
Author(s):  
Yusuke Fujiwara ◽  
Kei Kawada ◽  
Daiki Takano ◽  
Susumu Tanimura ◽  
Kei-ichi Ozaki ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1911-1911
Author(s):  
Karin von Schwarzenberg ◽  
Marco Henkel ◽  
Dennis Conzelmann ◽  
Björn Stork ◽  
Anita Bringmann ◽  
...  

Abstract The phosphatidylinositol 3-kinase (PI3K) pathway regulates many cellular processes that are involved in tumor progression. Aberrant activation of the PI3K pathway due to an alteration of its elements like PTEN or Akt occurs quite frequently in malignant cells. Thus, inhibition of this pathway represents a promising option for the treatment of cancer patients. The best characterized PI3K inhibitors are LY294002 and wortmannin that were shown to disrupt downstream signaling and induce apoptotic cell death in tumor cells. Acute lymphoblastic leukemia (ALL) is a malignancy mainly found in young children and elderly with constitutive activation of PI3K pathway. In our study we analyzed the effect of PI3K inhibition in cell lines deduced from ALL (Jurkat, BV173, SD1, T-2) and primary leukemic cells by incubating them with increasing concentrations of inhibitors of the PI3K signaling. We found that treatment of ALL cells with LY294002, the mTOR inhibitor rapamycin or Akt inhibitor SH5 induced apoptotic cell death that was accompanied by caspase-3 activation and PARP-cleavage and interfered with intracellular PI3K/Akt signaling as analyzed by phosphorylation and expression of mTOR or P70S6K. In line with these results apoptotic cell death could be inhibited by the pan-caspase inhibitor zVAD. In order to determine the pathway of apoptosis induction we took advantage of Jurkat cells (T-ALL) overexpressing or lacking molecules involved in apoptotic pathways such as FADD, an adaptor molecule recruited to the death receptor upon ligand binding, Caspase-8, Caspase-9 or Bcl-2, an anti-apoptotic protein that prevents the release of cytochrom c from mitochondria. PI3K inhibition by LY294002 induced apoptotic cell death in cells deficient of FADD or caspase-8 with no difference to wild type cells. In contrast, cells overexpressing Bcl2 or lacking caspase-9 were resistant to apoptotic death indicating that PI3-kinase inhibition is independent of the external death receptor signaling and is mediated via the mitochondrial pathway. These results were confirmed by analyzing PARP cleavage and caspase-3 activation in utilized leukemic cell lines. Furthermore, we found that the PI3K inhibitor LY294002 induced apoptosis in ALL cells that could be increased by the etoposide, a topoisomerase inhibitor, or TRAIL. In addition, in contrast to etoposide, treatment of ALL cells with TRAIL could overcome the resistance of ALL cells to PI3K inhibition even in caspase-9 deficient Jurkat cells. Our results provide an interesting approach in designing novel therapeutic strategies to target the PI3K pathway in ALL to overcome the resistance to cytotoxic agents.


Sign in / Sign up

Export Citation Format

Share Document