Abstract 670: Aurora kinase inhibitor VE 465 synergistically enhances cytotoxicity of carboplatin in ovarian cancer cells through induction of apoptosis and downregulation of histone 3

Author(s):  
Siqing Fu ◽  
Yangfan Li ◽  
De-yu Shen ◽  
Hong Zheng ◽  
John J. Kavanagh ◽  
...  
2013 ◽  
Vol 27 (1) ◽  
pp. 239-249 ◽  
Author(s):  
Aneta Rogalska ◽  
Agnieszka Marczak ◽  
Arkadiusz Gajek ◽  
Marzena Szwed ◽  
Agnieszka Śliwińska ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23485 ◽  
Author(s):  
Chun Hei Antonio Cheung ◽  
Wen-Hsing Lin ◽  
John Tsu-An Hsu ◽  
Tzyh-Chyuan Hour ◽  
Teng-Kuang Yeh ◽  
...  

2013 ◽  
Vol 23 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Madita Reutter ◽  
Günter Emons ◽  
Carsten Gründker

ObjectiveIncreased glycolysis for energy production is necessary for survival of tumor cells and thus represents a selective therapeutic target. We have analyzed in vitro whether inhibition of glycolysis can reduce the viability of human endometrial and ovarian cancer cells and whether it can enhance the antitumor efficacy of GnRH receptor-targeted therapies.Materials and MethodsCell viability of ovarian and endometrial cancer cells treated without or with glycolysis inhibitor 2-Deoxy-D-Glucose (2DG) alone or in combination with GnRH-II antagonist [Ac-D2Nal1, D-4Cpa2, D-3Pal3,6,Leu8, D-Ala10]GnRH-II or with cytotoxic GnRH-I agonist AEZS-108 (AN-152) was measured using alamar blue assay. Induction of apoptosis was analyzed using TUNEL assay and quantified by measurement of loss of mitochondrial membrane potential. Apoptotic signaling was measured by quantification of activated caspase-3 by using the Western blot technique.ResultsTreatment of endometrial and ovarian cancer cells with glycolysis inhibitor 2DG resulted in a significant decrease of cell viability and a significant increase of apoptosis. Treatment with 2DG in combination with the GnRH-II antagonist or with AEZS-108 resulted in a significant reduced viability compared with single-agent treatments. The observed reduction in viability was due to induction of apoptosis. Also for apoptosis induction, a significant stronger effect in the case of cotreatments compared with single-agent treatments could be observed. These additive effects could be correlated to increased activation of caspase-3.ConclusionsThe glycolytic phenotype of human endometrial and ovarian cancer cells can be targeted for therapeutic intervention. In addition, cotreatment of a glycolysis inhibitor with GnRH receptor-targeted therapies might be a suitable therapy for GnRH receptor-positive human endometrial and ovarian cancers.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5933
Author(s):  
Idowu E. Fadayomi ◽  
Okiemute R. Johnson-Ajinwo ◽  
Elisabete Pires ◽  
James McCullagh ◽  
Tim D. W. Claridge ◽  
...  

Objectives: The toxicity of chemotherapeutic anticancer drugs is a serious issue in clinics. Drug discovery from edible and medicinal plants represents a promising approach towards finding safer anticancer therapeutics. Justicia insularis T. Anderson (Acanthaceae) is an edible and medicinal plant in Nigeria. This study aims to discover cytotoxic compounds from this rarely explored J. insularis and investigate their underlying mechanism of action. Methods: The cytotoxicity of the plant extract was evaluated in human ovarian cancer cell lines and normal human ovarian surface epithelia (HOE) cells using a sulforhodamine B assay. Bioassay-guided isolation was carried out using column chromatography including HPLC, and the isolated natural products were characterized using GC-MS, LC-HRMS, and 1D/2D NMR techniques. Induction of apoptosis was evaluated using Caspase 3/7, 8, and 9, and Annexin V and PI based flow cytometry assays. SwissADME and SwissTargetPrediction web tools were used to predict the molecular properties and possible protein targets of identified active compounds. Key finding: The two cytotoxic compounds were identified as clerodane diterpenoids: 16(α/β)-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (1) and 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (2) from the Acanthaceous plant for the first time. Compound 1 was a very abundant compound (0.7% per dry weight of plant material) and was shown to be more potent than compound 2 with IC50 values in the micromolar range against OVCAR-4 and OVCAR-8 cancer cells. Compounds 1 and 2 were less cytotoxic to HOE cell line. Both compounds induced apoptosis by increasing caspase 3/7 activities in a concentration dependent manner. Compound 1 further increased caspase 8 and 9 activities and apoptosis cell populations. Compounds 1 and 2 are both drug like, and compound 1 may target various proteins including a kinase. Conclusions: Clerodane diterpenoids (1 and 2) in J. insularis were identified as cytotoxic to ovarian cancer cells via the induction of apoptosis, providing an abundant and valuable source of hit compounds for the treatment of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document