human ovarian cancer cell
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 18)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Yunjing Song ◽  
Jian Wang ◽  
Chunnian Zhang ◽  
Ying Yu ◽  
Hong Cai

IntroductionWe also investigated the Carpachromene in the cytotoxicity studies against common human ovarian cancer cell ‎line i.e., SW 626, in-vitro.Material and methodsCell viability of Carpachromene was very low against common ‎human ovarian cancer ‎cell line i.e. SW 626 without any cytotoxicity on normal cell line. To compare the ‎biological activities of molecules, the enzymes used are α-glucosidase, acetylcholinesterase, respectively. Finally, ‎calculations were made using the molecular docking method to compare the biological activity of the ‎carpachromene molecule. We then examined whether the release of Smac is necessary for apoptosis in ovarian ‎cancer cells using the SW 626‎ cell line. We first examined mitochondrial and cytosolic Smac levels after ‎Carpachromene treatment. ‎ResultsFollowing the docking calculations, the properties of the carpachromene molecule ‎were examined by ADME/T analysis in order to be used as a drug in the future. In addition, the anti-oxidant ‎properties of the molecules were examined in both gas and water phase with the HF/6-31g basis set with the ‎Gaussian software program. As shown, exposure of ovarian cancer cells to Carpachromene decreased ‎mitochondrial Smac and increased cytosolic Smac levels in a time-dependent fashion. As depicted in results, a ‎decrease in Smac expression was confirmed by Western blot. Silencing of Smac significantly inhibited ‎Carpachromene-induced caspase-3 cleavage and attenuated apoptosis in these cells Moreover, overexpression of ‎a Smac heptapeptide (Smac-N7) enhanced Carpachromene-induced cell deathConclusionsAccording to the above findings, the Carpachromene may be administrated for the treatment of several types of ‎human ovarian cancer in humans. ‎


2021 ◽  
Vol 30 ◽  
pp. 115880
Author(s):  
Luís R. Raposo ◽  
Ana Silva ◽  
Dário Silva ◽  
Catarina Roma-Rodrigues ◽  
Margarida Espadinha ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4438 ◽  
Author(s):  
Laura Verardi ◽  
Jessica Fiori ◽  
Vincenza Andrisano ◽  
Alessandra Locatelli ◽  
Rita Morigi ◽  
...  

Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERβ) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERβ expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re-expression by genetic engineering, as well as the use of targeted ERβ therapies, still constitute an important therapeutic approach. 3-{[2-chloro-1-(4-chlorobenzyl)-5-methoxy-6-methyl-1H-indol-3-yl]methylene}-5-hydroxy-6-methyl-1,3-dihydro-2H-indol-2-one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti-carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERβ. Mass spectrometry-based approaches were used to analyze histone post-translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERβ/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.


Sign in / Sign up

Export Citation Format

Share Document