Abstract 582: Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage, and is associated with inhibition of estrogen-induced breast cancer

Author(s):  
Bhupendra Singh ◽  
Hari K. Bhat
Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 225 ◽  
Author(s):  
Zhongliang Jiang ◽  
Yanhao Lai ◽  
Jill M. Beaver ◽  
Pawlos S. Tsegay ◽  
Ming-Lang Zhao ◽  
...  

DNA damage and base excision repair (BER) are actively involved in the modulation of DNA methylation and demethylation. However, the underlying molecular mechanisms remain unclear. In this study, we seek to understand the mechanisms by exploring the effects of oxidative DNA damage on the DNA methylation pattern of the tumor suppressor breast cancer 1 (BRCA1) gene in the human embryonic kidney (HEK) HEK293H cells. We found that oxidative DNA damage simultaneously induced DNA demethylation and generation of new methylation sites at the CpGs located at the promoter and transcribed regions of the gene ranging from −189 to +27 in human cells. We demonstrated that DNA damage-induced demethylation was mediated by nucleotide misincorporation by DNA polymerase β (pol β). Surprisingly, we found that the generation of new DNA methylation sites was mediated by coordination between pol β and the de novo DNA methyltransferase, DNA methyltransferase 3b (DNMT3b), through the interaction between the two enzymes in the promoter and encoding regions of the BRCA1 gene. Our study provides the first evidence that oxidative DNA damage can cause dynamic changes in DNA methylation in the BRCA1 gene through the crosstalk between BER and de novo DNA methylation.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1670
Author(s):  
Hurng-Wern Huang ◽  
Jen-Yang Tang ◽  
Fu Ou-Yang ◽  
Hui-Ru Wang ◽  
Pei-Ying Guan ◽  
...  

2013 ◽  
Vol 5 (3) ◽  
pp. 535-543
Author(s):  
M. Saiedullah ◽  
S. Hayat ◽  
M. R. Zamir ◽  
M. Arif ◽  
Z. H. Howlader ◽  
...  

Oxidative stress due to imbalance between the production of reactive oxygen species and their dismutation is claimed to be higher in hypertensive subjects than normotensive subjects. In hypertensive subjects oxidative stress may damage deoxy-ribonucleic acids (DNA). In this study plasma superoxide dismutase (SOD) activities, protein carbonyl contents (PCCs) and extent of DNA damage in lymphocytes were measured in specimens obtained from 86 subjects to compare oxidative stress and oxidative DNA damage between normotensive and hypertensive subjects and to assess their relationship with the degree of blood pressure. Results were expressed as mean±SD. Two-tailed unpaired t test and Pearson’s correlation test were done to compare or to determine the relationship between groups or variables. SOD activities were 2.85±0.12 unit/mg protein and 3.84±0.45 unit/mg protein (p<0.05) in hypertensive and normotensive groups respectively. PCCs were 4.77±0.36 nmol/mg protein and 3.75±0.23 nmol/mg protein in hypertensive and normotensive groups respectively. Olive tail moments (OTM) were 124.7±11.69 units and 108.9±9.27 units in hypertensive and normotensive groups respectively. The correlation coefficient of OTM was 0.3924 (p<0.05) for diastolic blood pressure and 0.3618 (p<0.05) for systolic blood pressure. Oxidative stress and DNA damage was higher in hypertensives than normotensives and DNA damage correlated positively with blood pressure. Keywords: Superoxide dismutase, Protein carbonyl content, Oxidative stress, Oxidative DNA damage, Hypertension, Bangladeshi population. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i3.15022 J. Sci. Res. 5 (3), 535-543 (2013)  


2010 ◽  
Vol 57 (4) ◽  
Author(s):  
Agnieszka Siomek ◽  
Kamil Brzoska ◽  
Barbara Sochanowicz ◽  
Daniel Gackowski ◽  
Rafal Rozalski ◽  
...  

Earlier experimental studies have demonstrated that: i) Cu,Zn-superoxide dismutase deficiency leads to oxidative stress and carcinogenesis; ii) dysregulation of NF-κB pathway can mediate a wide variety of diseases, including cancer. Therefore, we decided, for the first time, to examine the level of oxidative DNA damage and the DNA binding activity of NF-κB proteins in SOD1 knockout, heterozygous and wild-type mice. Two kinds of biomarkers of oxidatively damaged DNA: urinary excretion of 8-oxodG and 8-oxoGua, and the level of oxidatively damaged DNA were analysed using HPLC-GC-MS and HPLC-EC. The DNA binding activity of p50 and p65 proteins in a nuclear extracts was assessed using NF-κB p50/p65 EZ-TFA transcription factor assay. These parameters were determined in the brain, liver, kidney and urine of SOD1 knockout, heterozygous and wild-type mice. The level of 8-oxodG in DNA was higher in the liver and kidney of knockout mice than in wild type. No differences were found in urinary excretion of 8-oxoGua and 8-oxodG between wild type and the SOD1-deficient animals. The activity of the p50 protein was higher in the kidneys, but surprisingly not in the livers of SOD1-deficient mice, whereas p65 activity did not show any variability. Our results indicate that in Cu,Zn-SOD-deficient animals the level of oxidative DNA damage and NF-κB1 activity are elevated in certain organs only, which may provide some explanation for organ-specific ROS-induced carcinogenesis.


2011 ◽  
Vol 61 (3) ◽  
pp. 715-723 ◽  
Author(s):  
Shaik Mohammad Naushad ◽  
Cheruku Apoorva Reddy ◽  
Yedluri Rupasree ◽  
Addepalli Pavani ◽  
Raghunadha Rao Digumarti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document