Abstract 4042: Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells.

Author(s):  
Wenwen Chien ◽  
Qiaoyang Sun ◽  
Su Lin Lim ◽  
Ana D S M Varela ◽  
Haibo Sun ◽  
...  
Oncotarget ◽  
2014 ◽  
Vol 5 (13) ◽  
pp. 4881-4894 ◽  
Author(s):  
Wenwen Chien ◽  
Ling-Wen Ding ◽  
Qiao-Yang Sun ◽  
Lucia A. Torres-Fernandez ◽  
Siew Zhuan Tan ◽  
...  

Author(s):  
Yong-Qiang Hua ◽  
Ke Zhang ◽  
Jie Sheng ◽  
Zhou-Yu Ning ◽  
Ye Li ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient prognosis. A cellular stress response mechanism called the unfolded protein response (UPR) has been implicated in PDAC progression. More recently, nucleobindin 1 (NUCB1), a calcium-binding protein, has been shown to control the UPR but its precise role in PDAC has not been explored. Here, we found that downregulation of NUCB1 was associated with poor prognosis in patients with PDAC. Functionally, NUCB1 overexpression suppressed pancreatic cancer cell proliferation and showed additive effects with gemcitabine (GEM) in vitro and in vivo. Moreover, by controlling ATF6 activity, NUCB1 overexpression suppressed GEM-induced UPR and autophagy. Last but not least, we uncovered METTL3-mediated m6A modification on NUCB1 5′UTR via the reader YTHDF2 as a mechanism for NUCB1 downregulation in PDAC. Taken together, our study revealed crucial functions of NUCB1 in suppressing proliferation and enhancing the effects of gemcitabine in pancreatic cancer cells and identified METTL3-mediated m6A modification as a mechanism for NUCB1 downregulation in PDAC.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Claire M. Robinson ◽  
Aaron Talty ◽  
Susan E. Logue ◽  
Katarzyna Mnich ◽  
Adrienne M. Gorman ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.


2014 ◽  
Vol 306 (11) ◽  
pp. G1011-G1020 ◽  
Author(s):  
Nameeta Mujumdar ◽  
Sulagna Banerjee ◽  
Zhiyu Chen ◽  
Veena Sangwan ◽  
Rohit Chugh ◽  
...  

Pancreatic cancer is a devastating disease with a survival rate of <5%. Moreover, pancreatic cancer aggressiveness is closely related to high levels of prosurvival mediators, which can ultimately lead to rapid disease progression. One of the mechanisms that enables tumor cells to evade cellular stress and promote unhindered proliferation is the endoplasmic reticulum (ER) stress response. Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response (UPR). The UPR initially compensates for damage, but it eventually triggers cell death if ER dysfunction is severe or prolonged. Triptolide, a diterpene triepoxide, has been shown to be an effective compound against pancreatic cancer. Our results show that triptolide induces the UPR by activating the PKR-like ER kinase-eukaryotic initiation factor 2α axis and the inositol-requiring enzyme 1α-X-box-binding protein 1 axis of the UPR and leads to chronic ER stress in pancreatic cancer. Our results further show that glucose-regulated protein 78 (GRP78), one of the major regulators of ER stress, is downregulated by triptolide, leading to cell death by apoptosis in MIA PaCa-2 cells and autophagy in S2-VP10 cells.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1067
Author(s):  
Domenico Conza ◽  
Paola Mirra ◽  
Gaetano Calì ◽  
Luigi Insabato ◽  
Francesca Fiory ◽  
...  

Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells’ metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells’ growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/β-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited β-catenin mRNA and protein expression. This was paralleled by a reduction in β-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells’ growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/β-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer.


Endocrinology ◽  
2021 ◽  
Author(s):  
Yuanzhong Wang ◽  
Shiuan Chen

Abstract Estrogen and estrogen receptor (ER) play a fundamental role in breast cancer. To adapt the rapid proliferation of ER+ breast cancer cells, estrogen increases glucose uptake and reprograms glucose metabolism. Meanwhile, estrogen/ER activates the anticipatory unfolded protein response (UPR) preparing cancer cells for the increased protein production required for subsequent cell proliferation. Here, we report that thioredoxin-interacting protein (TXNIP) is an important regulator of glucose metabolism in ER+ breast cancer cells, and estrogen/ER increases glucose uptake and reprograms glucose metabolism via activating anticipatory unfolded protein response (UPR) and subsequently repressing TXNIP expression. By using two widely used ER+ breast cancer cell lines MCF7 and T47D, we showed that MCF7 cells express high TXNIP levels and exhibit mitochondrial oxidative phosphorylation (OXPHOS) phenotype, while T47D cells express low TXNIP levels and display aerobic glycolysis (Warburg effect) phenotype. Knockdown of TXNIP promoted glucose uptake and Warburg effect, while forced overexpression of TXNIP inhibited glucose uptake and Warburg effect. We further showed that estrogen represses TXNIP expression and activates UPR sensor inositol-requiring enzyme 1 (IRE1) via ER in the breast cancer cells, and IRE1 activity is required for estrogen suppression of TXNIP expression and estrogen-induced cell proliferation. Together, our study suggests that TXNIP is involved in estrogen-induced glucose uptake and metabolic reprogramming in ER+ breast cancer cells, and links anticipatory UPR to estrogen reprogramming glucose metabolism.


2021 ◽  
Author(s):  
Christopher J Fields ◽  
Lu Li ◽  
Nicholas M Hiers ◽  
Tianqi Li ◽  
Peike Sheng ◽  
...  

MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched in the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed genes are enriched in eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone Calnexin as a direct miR-320a target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. Our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.


Sign in / Sign up

Export Citation Format

Share Document