Abstract 334: Mcl-1 protects prostate cancer cells from chemotherapy-induced DNA damage

Author(s):  
Carlos Perez-Stable ◽  
Teresita Reiner ◽  
Alicia de las Pozas ◽  
Ricardo Parrondo
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


The Prostate ◽  
2010 ◽  
Vol 71 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Sandra Cuffe ◽  
Catherine M. Dowling ◽  
James Claffey ◽  
Clara Pampillón ◽  
Megan Hogan ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14631-e14631
Author(s):  
T. Xu ◽  
Y. Xu ◽  
R. Lao ◽  
K. He ◽  
L. Xue ◽  
...  

e14631 Background: Telomerase-interference (TI), a novel therapeutic strategy, exploits the high telomerase activity in prostate cancer by introducing a mutated telomerase RNA (MT-Ter) that encodes toxic telomeres. Until now, TI has been tested by targeting human telomerase in tumor cells xenografted into immuno-deficient mice, an inadequate model for predicting efficacy and toxicity. We designed and validated 2 new TI gene constructs that specifically target murine telomerase RNA (mTER), enabling the study of TI in preclinical mouse models that are immuno-competent and that develop endogenous prostate tumors. Methods: We designed 2 constructs and cloned them into a lentiviral delivery system: MT-mTER and siRNA against wild type mTer (α-mTer-siRNA). Using a mouse prostate cancer cell line, E4, we tested the 2 constructs for expression (RT-PCR), telomerase activity (TRAP), and biologic activity (53bp1 DNA damage staining, MTS growth assay, TUNEL and caspase apoptosis assays), as well as in vivo efficacy (NOD-SCID allografts). Results: We confirmed MT-mTER expression (∼50-fold) and showed that α-mTer-siRNA specifically depleted WT-mTER (80% reduction) but not MT-mTER when the 2 constructs are co-expressed; thus, the 2 constructs in combination effectively substituted MT-mTer for WT-mTer in the mouse prostate cancer cells. MT-mTER caused mutant telomeric repeats (TTTGGG instead of TTAGGG) to be added to the ends of telomeres, resulting in rapid telomeric uncapping marked by 53bp1 DNA damage foci (an average 7.5 foci/cell vs. 1.4 foci/cell in vector control). This, in turn, led to rapid and significant apoptosis (>90% TUNEL and caspase +) and growth inhibition in vitro (90% reduction by MTS) and in vivo (75% reduction in tumor allograft size). Conclusions: We successfully designed and validated MT-mTer and α-mTer-siRNA, 2 novel gene constructs that specifically target and co-opt murine telomerase activity within mouse prostate cancer cells. These constructs offer a significant advantage, as they can be used to investigate TI in immuno-competent mice that develop prostate cancer, thereby modeling actual human disease and testing TI-based therapies in a much more informative and authentic manner. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document