Abstract 2705: A computational algorithm to predict tumor growth and cancer stem cell proportion in-vitro and in-vivo from single-cell observations

Author(s):  
Alexander T. Pearson ◽  
Patrick Ingram ◽  
Shoumei Bai ◽  
Euisik Yoon ◽  
Trachette Jackson ◽  
...  
2020 ◽  
Vol 147 (6) ◽  
pp. 1694-1706 ◽  
Author(s):  
Alessia Brossa ◽  
Valentina Fonsato ◽  
Cristina Grange ◽  
Stefania Tritta ◽  
Marta Tapparo ◽  
...  

2015 ◽  
Author(s):  
Jan T Poleszczuk ◽  
Paul Macklin ◽  
Heiko Enderling

Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.


2012 ◽  
Vol 109 (41) ◽  
pp. 16558-16563 ◽  
Author(s):  
Y. Lombardo ◽  
A. Filipovic ◽  
G. Molyneux ◽  
M. Periyasamy ◽  
G. Giamas ◽  
...  

2018 ◽  
Author(s):  
Deli Hong ◽  
Andrew J. Fritz ◽  
Kristiaan H. Finstad ◽  
Mark P. Fitzgerald ◽  
Adam L. Viens ◽  
...  

SummaryRecent studies have revealed that mutations in the transcription factor Runx1 are prevalent in breast tumors. Yet, how loss of Runx1 contributes to breast cancer (BCa) remains unresolved. We demonstrate for the first time that Runx1 represses the breast cancer stem cell (BCSC) phenotype and consequently, functions as a tumor suppressor in breast cancer. Runx1 ectopic expression in MCF10AT1 and MCF10CA1a BCa cells reduces (60%) migration, invasion and in vivo tumor growth in mouse mammary fat pad (P<0.05). Runx1 is decreased in BCSCs, and overexpression of Runx1 suppresses tumorsphere formation and reduces the BCSC population. Furthermore, Runx1 inhibits Zeb1 expression, while Runx1 depletion activates Zeb1 and the epithelial-mesenchymal transition. Mechanistically Runx1 functions as a tumor suppressor in breast cancer through repression of cancer stem cell activity. This key regulation of BCSCs by Runx1 may be shared in other epithelial carcinomas, highlighting the importance of Runx1 in solid tumors.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi50-vi50
Author(s):  
Tiantian Cui ◽  
Erica Hlavin Bell ◽  
Joseph McElroy ◽  
Kevin Liu ◽  
Pooja Manchanda Gulati ◽  
...  

Abstract BACKGROUND Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival time of less than 15 months. miRNAs are emerging as promising and novel biomarkers in GBM. The aims of this study are: 1) to investigate novel miRNAs biomarkers that affect tumorigenesis and therapeutic sensitivity, and 2) to study the underlying molecular mechanisms in GBM. METHODS Nanostring v3 was performed followed by univariable (UVA) and multivariable (MVA) analyses. Functional studies were conducted to define the role of miR-146a in GBM tumorigenesis and therapeutic response and the molecular mechanisms were investigated. RESULTS UVA analyses demonstrated that miR-146a is one of the top miRNAs that correlated with better prognosis in GBM patients (p=9.21E-05), which was independent of MGMT promoter methylation by MVA analyses (p< 0.001). miR-146a expression was significantly downregulated in recurrent GBM tumors compared with the paired primary GBM tumors (p=0.003). Overexpression of miR-146a significantly inhibited tumor cell growth and sensitized patient-derived primary GBM cells to temozolomide (TMZ) treatment in vitro, and showed statistically significant smaller tumor size (p< 0.01) and prolonged survival (p=0.001) in vivo. In addition, miR-146a is downregulated in glioma cancer stem cells, and overexpression of miR-146a significantly affected glioma cancer stem cell self-renewal. We also found that overexpression of miR-146a significantly inhibited the NF-κB, AKT, and ERK pathways. CONCLUSION Our data suggest, for the first time, that miR-146a predicts favorable prognosis for GBM patients and sensitizes primary GBM cells to TMZ treatment in vitro and in vivo through regulating glioma stem cells. Importantly, miR-146a may prove to be a master switch shutting off AKT, NF-κB, as well as other pathways and may overcome redundancies among these pathways leading to resistance. FUNDING: Bohnenn Fund (to PR), R01CA108633, R01CA169368, U10CA180850-01(NCI), Brain Tumor Funders Collaborative Grant, and The Ohio State University CCC (all to AC).


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background:Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300(EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performedin silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolishedthe CSC phenotype by reducing ABCG2 expression, side population cells andtumorsphere formation capacityin vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells.TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion:We report a novel oncogenic role for EP300 in driving CSC phenotyperepresentinga potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC.Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chao Sun ◽  
Xingliang Dai ◽  
Dongliang Zhao ◽  
Haiyang Wang ◽  
Xiaoci Rong ◽  
...  

Abstract Background and objective Tumor angiogenesis is vital for tumor growth. Recent evidence indicated that bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to tumor sites and exert critical effects on tumor growth through direct and/or indirect interactions with tumor cells. However, the effect of BMSCs on tumor neovascularization has not been fully elucidated. This study aimed to investigate whether fusion cells from glioma stem cells and BMSCs participated in angiogenesis. Methods SU3-RFP cells were injected into the right caudate nucleus of NC-C57Bl/6 J-GFP nude mice, and the RFP+/GFP+ cells were isolated and named fusion cells. The angiogenic effects of SU3-RFP, BMSCs and fusion cells were compared in vivo and in vitro. Results Fusion cells showed elevated levels of CD31, CD34 and VE-Cadherin (markers of VEC) as compared to SU3-RFP and BMSCs. The MVD-CD31 in RFP+/GFP+ cell xenograft tumor was significantly greater as compared to that in SU3-RFP xenograft tumor. In addition, the expression of CD133 and stem cell markers Nanog, Oct4 and Sox2 were increased in fusion cells as compared to the parental cells. Fusion cells exhibited enhanced angiogenic effect as compared to parental glioma cells in vivo and in vitro, which may be related to their stem cell properties. Conclusion Fusion cells exhibited enhanced angiogenic effect as compared to parental glioma cells in vivo and in vitro, which may be related to their stem cell properties. Hence, cell fusion may contribute to glioma angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document