Abstract LB-122: Tumor heterogeneity in castration resistant neuroendocrine prostate cancer from whole exome sequencing of circulating tumor DNA

Author(s):  
Himisha Beltran ◽  
Alssandro Romanel ◽  
Nicola Casiraghi ◽  
Michael Sigouros ◽  
Matteo Benelli ◽  
...  
2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii165-ii165
Author(s):  
Hao Duan ◽  
Zhenqiang He ◽  
Zhenghe Chen ◽  
Yonggao Mou

Abstract Cerebrospinal fluid (CSF) has been demonstrated as a better source of circulating tumor DNA (ctDNA) than plasma for brain tumors. However, it is unclear whether whole exome sequencing (WES) is qualified for detection of ctDNA in CSF. The aim of this study was to determine if assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma. CSFs of ten glioblastoma patients were collected pre-operatively at the Department of Neurosurgery, Sun Yat-sen University Cancer Center. ctDNA in CSF and genome DNA in the resected tumor were extracted and subjected to WES. The identified glioblastoma-associated mutations from ctDNA in CSF and genome DNA in the resected tumor were compared. Due to the ctDNA in CSF was unqualified for exome sequencing for one patient, nine patients were included into the final analysis. More glioblastoma-associated mutations tended to be detected in CSF comparing with the corresponding tumor tissue samples (3.56±0.75 vs. 2.22±0.32, P=0.097), while the statistical significance was limited by the small sample size. The average mutation frequencies were similar in CSF and tumor tissue samples (74.12% ± 6.03% vs. 73.83% ± 5.95%, P = 0.924). The R132H mutation of isocitrate dehydrogenase 1 and the G34V mutation of H3F3A which had been reported in the pathological diagnoses were also detected from ctDNA in CSF by WES. Patients who received temozolomide chemotherapy previously or those whose tumor involved subventricular zone tended to harbor more mutations in their CSF. Assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma, which may provide useful information for the decision of treatment strategy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zachary T. Weber ◽  
Katharine A. Collier ◽  
David Tallman ◽  
Juliet Forman ◽  
Sachet Shukla ◽  
...  

Abstract Background Circulating tumor DNA (ctDNA) offers minimally invasive means to repeatedly interrogate tumor genomes, providing opportunities to monitor clonal dynamics induced by metastasis and therapeutic selective pressures. In metastatic cancers, ctDNA profiling allows for simultaneous analysis of both local and distant sites of recurrence. Despite the promise of ctDNA sampling, its utility in real-time genetic monitoring remains largely unexplored. Methods In this exploratory analysis, we characterize high-frequency ctDNA sample series collected over narrow time frames from seven patients with metastatic triple-negative breast cancer, each undergoing treatment with Cabozantinib, a multi-tyrosine kinase inhibitor (NCT01738438, https://clinicaltrials.gov/ct2/show/NCT01738438). Applying orthogonal whole exome sequencing, ultra-low pass whole genome sequencing, and 396-gene targeted panel sequencing, we analyzed 42 plasma-derived ctDNA libraries, representing 4–8 samples per patient with 6–42 days between samples. Integrating tumor fraction, copy number, and somatic variant information, we model tumor clonal dynamics, predict neoantigens, and evaluate consistency of genomic information from orthogonal assays. Results We measured considerable variation in ctDNA tumor faction in each patient, often conflicting with RECIST imaging response metrics. In orthogonal sequencing, we found high concordance between targeted panel and whole exome sequencing in both variant detection and variant allele frequency estimation (specificity = 95.5%, VAF correlation, r = 0.949), Copy number remained generally stable, despite resolution limitations posed by low tumor fraction. Through modeling, we inferred and tracked distinct clonal populations specific to each patient and built phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, PIK3CA, CDK4, and PTEN. Our modeling revealed varied responses to therapy, with some individuals displaying stable clonal profiles, while others showed signs of substantial expansion or reduction in prevalence, with characteristic alterations of varied literature annotation in relation to the study drug. Finally, we predicted and tracked neoantigen-producing alterations across time, exposing translationally relevant detection patterns. Conclusions Despite technical challenges arising from low tumor content, metastatic ctDNA monitoring can aid our understanding of response and progression, while minimizing patient risk and discomfort. In this study, we demonstrate the potential for high-frequency monitoring of evolving genomic features, providing an important step toward scalable, translational genomics for clinical decision making.


2020 ◽  
Vol 130 (4) ◽  
pp. 1653-1668 ◽  
Author(s):  
Himisha Beltran ◽  
Alessandro Romanel ◽  
Vincenza Conteduca ◽  
Nicola Casiraghi ◽  
Michael Sigouros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document