Abstract 5839: Growth hormone receptor (GHR) expression confers resistance to ruxolitinib in endocrine-resistant breast cancer cells

Author(s):  
Anja N. Holtz ◽  
Douglas Yee ◽  
Heather Beckwith
2011 ◽  
Vol 25 (4) ◽  
pp. 597-610 ◽  
Author(s):  
Jie Xu ◽  
Yue Zhang ◽  
Philip A. Berry ◽  
Jing Jiang ◽  
Peter E. Lobie ◽  
...  

GH receptor (GHR) and prolactin (PRL) receptor (PRLR) are structurally similar cytokine receptor superfamily members that are highly conserved among species. GH has growth-promoting and metabolic effects in various tissues in vertebrates, including humans. PRL is essential for regulation of lactation in mammals. Recent studies indicate that breast tissue bears GHR and PRLR and that both GH and PRL may impact development or behavior of breast cancer cells. An important facet of human GH (hGH) and human PRL (hPRL) biology is that although hPRL interacts only with hPRLR, hGH binds well to both hGHR and hPRLR. Presently, we investigated potential signaling effects of both hormones in the estrogen receptor- and progesterone receptor-positive human T47D breast cancer cell line. We found that this cell type expresses ample GHR and PRLR and responds well to both hGH and hPRL, as evidenced by activation of the Janus kinase 2/signal transducer and activator of transcription 5 pathway. Immunoprecipitation studies revealed specific GHR-PRLR association in these cells that was acutely enhanced by GH treatment. Although GH caused formation of disulfide-linked and chemically cross-linked GHR dimers in T47D cells, GH preferentially induced tyrosine phosphorylation of PRLR rather than GHR. Notably, both a GHR-specific ligand antagonist (B2036) and a GHR-specific antagonist monoclonal antibody (anti-GHRext-mAb) failed to inhibit GH-induced signal transducer and activator of transcription 5 activation. In contrast, although the non-GHR-specific GH antagonist (G120R) and the PRL antagonist (G129R) individually only partially inhibited GH-induced activation, combined treatment with these two antagonists conferred greater inhibition than either alone. These data indicate that endogenous GHR and PRLR associate (possibly as a GHR-PRLR heterodimer) in human breast cancer cells and that GH signaling in these cells is largely mediated by the PRLR in the context of both PRLR-PRLR homodimers and GHR-PRLR heterodimers, broadening our understanding of how these related hormones and their related receptors may function in physiology and pathophysiology.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 9
Author(s):  
Amani Abdulmunem ◽  
Pınar Obakan-Yerlikaya ◽  
Elif-Damla Arisan ◽  
Ajda Coker-Gurkan

Breast cancer is the most common cancer in women worldwide and the second most common cancer overall. Autocrine growth hormone (GH) expression induced cell proliferation, growth, invasion-metastasis in vitro and in vivo breast cancer models. Moreover, forced GH signaling acts as a drug resistance profile in breast cancer cell lines against chemotherapeutic drugs such as tamoxifen, mitomycin C, doxorubicin and curcumin. Triptolide, an active plant extract from Tripterygium wilfordii, has been shown to induce apoptotic cell death in various cancer cells such a prostate, colon, breast cancer. Metformin, a common therapeutic agent for type II Diabetes mellitus, has been shown to induce autophagy, endoplasmic reticulum (ER) stress and apoptotic cell death in cancer cells. Our aim is to demonstrate the potential effect of metformin on triptolide-mediated drug resistance in autocrine GH expressing MDA-MB-231 breast cancer cells through Endoplasmic reticulum (ER) stress. Autocrine GH-mediated triptolide (20 nM) resistance overcame by metformin (2 mM) co-teatment in MDA-MB231 breast cancer cells through accelerating cell viability loss, growth inhibition compared to alone triptolide treatment. Combined treatment increased apoptotic cell death via CHOP activation, IRE1α upregulation. Consequently, we suggest that triptolide can be more effective with metformin combination in MDA-MB-231 GH+ drug resistant breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document