Abstract A14: Exploiting DNA damage repair defects to enhance PD-L1 expression in Ewing sarcoma

Author(s):  
Lisa M. Maurer ◽  
Rose M. Venier ◽  
Claire Julian ◽  
Kelly M. Bailey
2020 ◽  
Author(s):  
Lisa M. Maurer ◽  
Rosemarie E. Venier ◽  
Elina Mukherjee ◽  
Claire M. Julian ◽  
Jessica D. Daley ◽  
...  

ABSTRACTEwing sarcoma, an oncofusion-driven primary bone tumor, can occur in the setting of various germline mutations in DNA damage repair pathway genes. We recently reported our discovery of a germline mutation in the DNA damage repair protein BARD1 (BRCA1-associated RING domain-1) in a patient with Ewing sarcoma. BARD1 is recruited to the site of DNA double stranded breaks via the poly(ADP-ribose) polymerase (PARP) protein and plays a critical role in DNA damage response pathways including homologous recombination. PARP inhibitors (PARPi) are effective against Ewing sarcoma cells in vitro, though have demonstrated limited success in clinical trials to date. In order to assess the impact of BARD1 loss on Ewing sarcoma sensitivity to PARP inhibitor therapy, we generated the novel PSaRC318 patient-derived Ewing tumor cell from our patient with a germline BARD1 mutation and then analyzed the response of these cells to PARPi. We demonstrate that PSaRC318 cells are sensitive to PARP inhibition and by testing the effect of BARD1 depletion in additional Ewing sarcoma cell lines, we confirm that loss of BARD1 enhances PARPi sensitivity. In certain malignancies, DNA damage can activate the IRF1 (interferon response factor 1) immunoregulatory pathway, and the activation of this pathway can drive immunosuppression through upregulation of the immune checkpoint protein PD-L1. In order to determine the ability of PARPi to alter Ewing tumor immunoregulation, we evaluated whether PARPi results in upregulation of the IRF1-PDL1 pathway. Indeed, we now demonstrate that PARPi leads to increased PD-L1 expression in Ewing sarcoma. Together, these data thus far suggest that while Ewing tumors harboring germline mutations in DNA damage repair proteins may in respond to PARPi in vitro, in vivo benefit of PARPi may only be demonstrated when counteracting the immunosuppressive effects of DNA damage by concurrently targeting immune checkpoint proteins.


2020 ◽  
Author(s):  
Xiaofeng A. Su ◽  
Duanduan Ma ◽  
James V. Parsons ◽  
John M. Replogle ◽  
James F. Amatruda ◽  
...  

2018 ◽  
Author(s):  
Marwa Afifi ◽  
Breelyn A. Wilky ◽  
Catherine Kim ◽  
Venu Raman ◽  
David Loeb

2022 ◽  
Author(s):  
Riaz Gillani ◽  
Sabrina Y. Camp ◽  
Seunghun Han ◽  
Jill K. Jones ◽  
Schuyler O'Brien ◽  
...  

More knowledge is needed around the role and importance of specific genes in germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. In this study, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out an ancestry-matched case-control analysis to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1138 individuals with pediatric sarcoma diagnoses (222 Ewing sarcoma cases) relative to identically processed cancer-free controls. Findings in Ewing sarcoma were validated with an additional cohort of 425 individuals, and 301 Ewing sarcoma parent-proband trios were analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the discovery Ewing sarcoma cohort (OR 14.4, 95% CI 3.5 - 51.2, p = 0.002, FDR = 0.28). This enrichment in FANCC heterozygous pathogenic variants was seen again in the Ewing sarcoma validation cohort (OR 5.1, 95% CI 1.2 - 18.5, p = 0.03, single hypothesis), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in Ewing sarcoma cases. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document