scholarly journals PARP inhibition in Ewing sarcoma: impact of germline DNA damage repair defects and activation of immunoregulatory pathways

2020 ◽  
Author(s):  
Lisa M. Maurer ◽  
Rosemarie E. Venier ◽  
Elina Mukherjee ◽  
Claire M. Julian ◽  
Jessica D. Daley ◽  
...  

ABSTRACTEwing sarcoma, an oncofusion-driven primary bone tumor, can occur in the setting of various germline mutations in DNA damage repair pathway genes. We recently reported our discovery of a germline mutation in the DNA damage repair protein BARD1 (BRCA1-associated RING domain-1) in a patient with Ewing sarcoma. BARD1 is recruited to the site of DNA double stranded breaks via the poly(ADP-ribose) polymerase (PARP) protein and plays a critical role in DNA damage response pathways including homologous recombination. PARP inhibitors (PARPi) are effective against Ewing sarcoma cells in vitro, though have demonstrated limited success in clinical trials to date. In order to assess the impact of BARD1 loss on Ewing sarcoma sensitivity to PARP inhibitor therapy, we generated the novel PSaRC318 patient-derived Ewing tumor cell from our patient with a germline BARD1 mutation and then analyzed the response of these cells to PARPi. We demonstrate that PSaRC318 cells are sensitive to PARP inhibition and by testing the effect of BARD1 depletion in additional Ewing sarcoma cell lines, we confirm that loss of BARD1 enhances PARPi sensitivity. In certain malignancies, DNA damage can activate the IRF1 (interferon response factor 1) immunoregulatory pathway, and the activation of this pathway can drive immunosuppression through upregulation of the immune checkpoint protein PD-L1. In order to determine the ability of PARPi to alter Ewing tumor immunoregulation, we evaluated whether PARPi results in upregulation of the IRF1-PDL1 pathway. Indeed, we now demonstrate that PARPi leads to increased PD-L1 expression in Ewing sarcoma. Together, these data thus far suggest that while Ewing tumors harboring germline mutations in DNA damage repair proteins may in respond to PARPi in vitro, in vivo benefit of PARPi may only be demonstrated when counteracting the immunosuppressive effects of DNA damage by concurrently targeting immune checkpoint proteins.

2021 ◽  
Vol 10 ◽  
Author(s):  
Yipeng Song ◽  
Jian Huang ◽  
Dandan Liang ◽  
Ying Hu ◽  
Beibei Mao ◽  
...  

BackgroundDNA damage repair (DDR) genes were recently implicated in the anti-tumor immune response. Therefore, it is worthwhile to unravel the implications of DDR pathways in the shaping of immune responsiveness in colorectal cancer (CRC) patients receiving immune checkpoint inhibitors (ICI).MethodsWe analyzed publicly available genomic data from a cohort treated with ICI from Memorial Sloan Kettering Cancer Center (MSK ICI cohort). To characterize the impact of the DDR mutation, the genomic data of The Cancer Genome Atlas (TCGA) colorectal adenocarcinoma (COADREAD) dataset was explored. We also analyzed the incidence of DDR mutation and microsatellite instability-high (MSI-H) in a Chinese CRC cohort using panel sequencing.ResultsThe DDR pathway was commonly mutated (21.8%) in the multicancer MSK ICI cohort, with the highest frequency of 36.4% in CRCs. Survival analysis showed that DDR mutation correlated with an improved overall survival (OS) in CRCs and pan-cancer in the MSK ICI cohort. However, no significant associations were identified in the TCGA COADREAD and MSK non-ICI CRCs. DDR mutation was associated with higher tumor mutational burden (TMB) levels and increased immune cell infiltration and immune checkpoint molecule expression in the TCGA COADREAD dataset. Last, we investigated the DDR mutational pattern and its associations with MSI-H and other genomic features in a Chinese CRC cohort. Notably, MSI-H and DDR mutation was present in 5.7% and 13.4% of cases, respectively, which suggests that DDR identifies a higher proportion of potential responders than MSI-H.ConclusionOur data suggest that DDR mutation as an indication of enhanced cancer immunity, and it may function as a biomarker for patients with CRCs receiving ICI treatment. The high incidence of DDR mutation in the Chinese CRC cohort emphasizes the future utility of panel-based DDR evaluation in guiding ICI treatment.


2021 ◽  
Author(s):  
Miaoqin Chen ◽  
Weikai Wang ◽  
Shiman Hu ◽  
Yifan Tong ◽  
Yiling Li ◽  
...  

Abstract BackgroundHepatocellular carcinoma (HCC) is one of the most fatal cancers. Due to limited strategies for effective treatments, patients with advanced HCC have a very poor prognosis. This study aims to identify novel druggable candidate genes for patients with HCC.MethodsThe role of WIP1 (wild type p53 induced protein phosphatase1) in HCC was analyzed in HCC cells, nude mice assay, WIP1 knockout mice, and TCGA database. DNA damage was evaluated by Gene Set Enrichment Analysis, Western blotting, comet assay, and Immunofluorescence.ResultsHigh expression of WIP1 is associated with poor prognosis of patients with HCC. Genetically and chemically suppression of WIP1 drastically reduced HCC cell proliferation in vitro and in vivo via inducing DNA damage. WIP1 knockout retarded DEN (Diethylnitrosamine) induced mice hepato-carcinogenesis. In addition, suppression of WIP1 together with PARP inhibition induced synthetic lethality in HCC cells by disrupting DNA damage repair.ConclusionWIP1 plays an oncogenic effect in HCC development, and targeting WIP1-dependent DNA damage repair might be a novel strategy for HCC management.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260852
Author(s):  
Meryem Ozgencil ◽  
Julian Barwell ◽  
Marc Tischkowitz ◽  
Louise Izatt ◽  
Ian Kesterton ◽  
...  

Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Juliet Goldsmith ◽  
Timothy Marsh ◽  
Saurabh Asthana ◽  
Andrew M. Leidal ◽  
Deepthisri Suresh ◽  
...  

AbstractAutophagy promotes protein degradation, and therefore has been proposed to maintain amino acid pools to sustain protein synthesis during metabolic stress. To date, how autophagy influences the protein synthesis landscape in mammalian cells remains unclear. Here, we utilize ribosome profiling to delineate the effects of genetic ablation of the autophagy regulator, ATG12, on translational control. In mammalian cells, genetic loss of autophagy does not impact global rates of cap dependent translation, even under starvation conditions. Instead, autophagy supports the translation of a subset of mRNAs enriched for cell cycle control and DNA damage repair. In particular, we demonstrate that autophagy enables the translation of the DNA damage repair protein BRCA2, which is functionally required to attenuate DNA damage and promote cell survival in response to PARP inhibition. Overall, our findings illuminate that autophagy impacts protein translation and shapes the protein landscape.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1118 ◽  
Author(s):  
Ming Tang ◽  
Zhiming Li ◽  
Chaohua Zhang ◽  
Xiaopeng Lu ◽  
Bo Tu ◽  
...  

The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair.


2019 ◽  
Vol 20 (19) ◽  
pp. 4728 ◽  
Author(s):  
Hwani Ryu ◽  
Hyun-Kyung Choi ◽  
Hyo Jeong Kim ◽  
Ah-Young Kim ◽  
Jie-Young Song ◽  
...  

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the ‘BRCAness’/‘DNA-PKness’ phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


2020 ◽  
Author(s):  
Lisa M. Maurer ◽  
Rose M. Venier ◽  
Claire Julian ◽  
Kelly M. Bailey

2020 ◽  
Vol 26 (3) ◽  
pp. 141-153
Author(s):  
Minhao Hu ◽  
Yiyun Lou ◽  
Shuyuan Liu ◽  
Yuchan Mao ◽  
Fang Le ◽  
...  

Abstract Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.


2020 ◽  
Vol 8 (2) ◽  
pp. e000293
Author(s):  
Mengyuan Li ◽  
Yuxiang Ma ◽  
You Zhong ◽  
Qian Liu ◽  
Canping Chen ◽  
...  

Backgroundkalirin RhoGEF kinase (KALRN) is mutated in a wide range of cancers. Nevertheless, the association between KALRN mutations and the pathogenesis of cancer remains unexplored. Identification of biomarkers for cancer immunotherapy response is crucial because immunotherapies only show beneficial effects in a subset of patients with cancer.MethodsWe explored the correlation between KALRN mutations and antitumor immunity in 10 cancer cohorts from The Cancer Genome Atlas program by the bioinformatics approach. Moreover, we verified the findings from the bioinformatics analysis with in vitro and in vivo experiments. We explored the correlation between KALRN mutations and immunotherapy response in five cancer cohorts receiving immune checkpoint blockade therapy.ResultsAntitumor immune signatures were more enriched in KALRN-mutated than KALRN-wildtype cancers. Moreover, KALRN mutations displayed significant correlations with increased tumor mutation burden and the microsatellite instability or DNA damage repair deficiency genomic properties, which may explain the high antitumor immunity in KALRN-mutated cancers. Also, programmed cell death 1 ligand (PD-L1) expression was markedly upregulated in KALRN-mutated versus KALRN-wildtype cancers. The increased antitumor immune signatures and PD-L1 expression in KALRN-mutated cancers may favor the response to immune checkpoint blockade therapy in this cancer subtype, as evidenced in five cancer cohorts receiving antiprogrammed cell death protein 1 (PD-1)/PD-L1/cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) immunotherapy. Furthermore, the significant association between KALRN mutations and increased antitumor immunity was associated with the fact that KALRN mutations compromised the function of KALRN in targeting Rho GTPases for the regulation of DNA damage repair pathways. In vitro and in vivo experiments validated the association of KALRN deficiency with antitumor immunity and the response to immune checkpoint inhibitors.ConclusionsThe KALRN mutation is a useful biomarker for predicting the response to immunotherapy in patients with cancer.


Sign in / Sign up

Export Citation Format

Share Document