Abstract B07: Prospective germline next-generation sequencing in pediatric patients with neuroblastoma identifies frequent alterations in genes involved in DNA damage repair

Author(s):  
Sarah Cohen-Gogo ◽  
Karin Langenberg-Ververgaert ◽  
Anita Villani ◽  
Winnie Lo ◽  
Ted Young ◽  
...  
2019 ◽  
pp. 1-9 ◽  
Author(s):  
Michael T. Schweizer ◽  
Emmanuel S. Antonarakis ◽  
Tarek A. Bismar ◽  
Liana B. Guedes ◽  
Heather H. Cheng ◽  
...  

PURPOSE Ductal prostate cancer (dPC) is a rare variant of prostatic adenocarcinoma associated with poor outcomes. Although its histopathologic features are well characterized, the underlying molecular hallmarks of this aggressive subtype are not well described. We sought to provide a comprehensive overview of the spectrum of mutations associated with dPC. METHODS Three case series across multiple institutions were assembled. All patients had a diagnosis of dPC, and histopathologic classification was confirmed by an expert genitourinary pathologist. Case series 1 included men who were prospectively enrolled in a tumor sequencing study at the University of Washington (n = 22). Case series 2 and 3 included archival samples from men treated at Johns Hopkins Hospital (n = 21) and University of Calgary (n = 8), respectively. Tumor tissue was sequenced on a targeted next-generation sequencing assay, UW-OncoPlex, according to previously published methods. The frequency of pathogenic/likely pathogenic mutations are reported. RESULTS Overall, 25 patients (49%) had at least one DNA damage repair gene alteration, including seven (14%) with a mismatch repair gene mutation and 16 (31%) with a homologous repair mutation. Germline autosomal dominant mutations were confirmed or suspected in 10 patients (20%). Activating mutations in the PI3K pathway (n = 19; 37%), WNT pathway (n = 16; 31%), and MAPK pathway (n = 8; 16%) were common. CONCLUSION This study strongly suggests that dPCs are enriched for actionable mutations, with approximately 50% of patients demonstrating DNA damage repair pathway alteration(s). Patients with dPC should be offered next-generation sequencing to guide standard-of-care treatment (eg, immune checkpoint inhibitors) or triaged toward an appropriate clinical trial (eg, poly [ADP-ribose] polymerase inhibitors).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Suguru Takeuchi ◽  
Jun-ichi Kawada ◽  
Kazuhiro Horiba ◽  
Yusuke Okuno ◽  
Toshihiko Okumura ◽  
...  

Abstract Next-generation sequencing (NGS) has been applied in the field of infectious diseases. Bronchoalveolar lavage fluid (BALF) is considered a sterile type of specimen that is suitable for detecting pathogens of respiratory infections. The aim of this study was to comprehensively identify causative pathogens using NGS in BALF samples from immunocompetent pediatric patients with respiratory failure. Ten patients hospitalized with respiratory failure were included. BALF samples obtained in the acute phase were used to prepare DNA- and RNA-sequencing libraries. The libraries were sequenced on MiSeq, and the sequence data were analyzed using metagenome analysis tools. A mean of 2,041,216 total reads were sequenced for each library. Significant bacterial or viral sequencing reads were detected in eight of the 10 patients. Furthermore, candidate pathogens were detected in three patients in whom etiologic agents were not identified by conventional methods. The complete genome of enterovirus D68 was identified in two patients, and phylogenetic analysis suggested that both strains belong to subclade B3, which is an epidemic strain that has spread worldwide in recent years. Our results suggest that NGS can be applied for comprehensive molecular diagnostics as well as surveillance of pathogens in BALF from patients with respiratory infection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huimin Hu ◽  
Weiling Zhang ◽  
Tian Zhi ◽  
Jing Li ◽  
Yuan Wen ◽  
...  

BackgroundHepatoblastoma (HB) is the most common malignant embryonic liver tumor type in children under 3 years of age. In the present study, the next generation sequencing (NGS) method was used to detect the genotype characteristics of HB and summarize the correlation between the common mutation genotypes noted in this disease and the clinical treatment and prognosis. The results may aid clinical prognosis and the successful application of targeted drugs.MethodsInitially, DNA was extracted from tumor tissue specimens and peripheral blood derived from 19 pediatric patients with HB. Subsequently, DNA panel and NGS methods were used to detect tumor diagnosis and the expression levels of treatment-associated genes, followed by the summary of genotype characteristics. In addition, in order to further assess the application of immunotherapy in HB, immunohistochemical detection of programmed cell death 1 ligand 1 (PDL1) was performed in combination with tumor mutation burden (TMB) and DNA mismatch repair status analysis. Furthermore, the clinical treatment effect and prognosis of the pediatric patients were statistically analyzed according to the characteristics of the genotype. Overall prognosis and prognostic analyses in different groups were performed by Kaplan-Meier and log-rank tests, respectively. Finally, expression validation and diagnostic analysis of commonly reported genes were performed in the GSE75271 dataset, which was obtained from the Gene Expression Omnibus (GEO) database.ResultsIn the present study, certain mutated genes, including nuclear factor erythroid 2-related factor 2 (NFE2L2), catenin β1 (CTNNB1), MYCN, tumor protein p53, axis inhibition protein 1 (AXIN1) and adenomatous polyposis coli (APC) were associated with the pathogenesis of HB. During TMB and DNA mismatch repair status analyses, pediatric patients had a low TMB. All of them did not present with microsatellite instability. The immunohistochemical results indicated lower expression levels of PDL1 in HB. The complete remission (CR) rate of pediatric patients in the gene abnormality group was lower than that of the non-reported disease-associated gene abnormality group. The 2-year overall survival rate and disease-free survival rate of 19 pediatric patients with HB were 72.1% and 42.4%, respectively. Receiver operating characteristic (ROC) analysis demonstrated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and insulin growth factor 2 (IGF2) may be potential biomarkers that could be used for the diagnosis of HB.ConclusionThe genotype changes in HB were more common and the CR rate of the pediatric patients with an altered genotype was lower than that of pediatric patients without an altered genotype. In addition, pediatric patients with HB exhibited lower TMB compared with adult patients. Moreover, the data indicated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and IGF2 may be potential biomarkers that can be used for the diagnosis of HB.


Sign in / Sign up

Export Citation Format

Share Document