Abstract P2-04-11: Promotion of immunogenicity using epigenetic modulation and immune checkpoint inhibition in mouse models of breast cancer

Author(s):  
ET Roussos Torres ◽  
H Ma ◽  
T Armstrong ◽  
R Connolly ◽  
V Stearns ◽  
...  
2019 ◽  
Vol 11 (4) ◽  
pp. 228-240 ◽  
Author(s):  
Brie M. Chun ◽  
David B. Page ◽  
Heather L. McArthur

Abstract Purpose of Review We summarize combination immunotherapy strategies for the treatment of breast cancer, with a focus on metastatic disease. First, a general overview of combination approaches is presented according to breast cancer subtype. Second, additional review of promising combination approaches is presented. Recent Findings Combination strategies utilizing chemotherapy or radiotherapy with immune checkpoint inhibition are being evaluated across multiple phase III trials. Dual immunotherapy strategies, such as dual immune checkpoint inhibition or combined co-stimulation/co-inhibition, have supportive preclinical evidence and are under early clinical investigation. Modulation of the immune microenvironment via cytokines and vaccination strategies, as well as locally focused treatments to enhance antigenic responses, are active areas of research. Summary Pre-clinical and translational research sheds new light on numerous ways the immune system may be modulated to fight against cancer. We describe current and emerging combination approaches which may improve patient outcomes in metastatic breast cancer.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1091-1091
Author(s):  
Sarah Sammons ◽  
Andrew Elliott ◽  
Jeremy Meyer Force ◽  
Nicholas C. DeVito ◽  
Paul Kelly Marcom ◽  
...  

1091 Background: Tumor mutational burden (TMB) has emerged as an imperfect biomarker of immune checkpoint inhibition (ICI) outcomes in solid tumors. Despite the approval for pembrolizumab in all TMB-high (TMB-H) solid tumors, the optimal clinical approach to TMB-H or hypermutated advanced/metastatic breast cancer (MBC) is unknown with sparse prospective data. We hypothesize that TMB-H MBC will have unique genomic alterations compared to TMB-low (TMB-L) breast cancer that could inform novel therapeutic approaches. Methods: Tumor samples (N = 5621) obtained from patients with MBC were analyzed by next-generation sequencing (NGS) of DNA (592-gene panel or whole exome sequencing) and RNA (whole transcriptome sequencing) at Caris Life Sciences (Phoenix, AZ). TMB was calculated based on recommendations from the Friends of Cancer Research TMB Harmonization Project (Merino et al., 2020), with the TMB-H threshold set to ≥ 10 muts/Mb. IHC was performed for PD-L1 (Ventana SP142 ≥1% immune cells). Deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) was tested by IHC and NGS, respectively. Results: TMB-H was identified in 8.2% (n = 461) of MBC samples, with similar frequencies observed across molecular subtypes (7.8-8.6%, p = 0.85): HR+/HER2- (n = 3087) 7.8%, HR+/HER2+ (n = 266) 8.3%, HR-/HER2+ (n = 179) 7.8%, TNBC (n = 1476) 8.6%. The frequency of TMB-H was significantly increased in lobular (16%) versus ductal (5%) MBC (p < 0.01). TMB-H samples were enriched in genitourinary (42%), soft tissue (20%), and gastrointestinal non-liver (16%) biopsy specimens. Compared to TMB-L tumors, TMB-H tumors exhibited significantly higher mutation rates for TP53 (60 v 52%), PIK3CA (55 vs 31%), ARID1A (34 vs 11%), CDH1 (27 vs 11%), NF1 (22 vs 9%), RB1 (14 vs 5%), KMT2C (12 vs 7%), PTEN (12 vs 7%), ERBB2 (7 vs 2.9%), and PALB2 (3.3 vs 1%) genes (p < 0.05 each). Copy number alteration and fusion rates did not differ between TMB-H and TMB-L breast cancers. PI3K/AKT/MTOR, TP53, Histone/Chromatin remodeling, DNA damage repair (DDR), RAS, and cell cycle pathway alterations were detected in > 25% TMB-H MBCs (p < 0.05 each). dMMR/MSI-High (7.2 vs 0.3%, p < 0.01) and PD-L1 positivity (36 vs 28%, p < 0.05) frequencies were significantly increased in TMB-H tumors. DNA signature analyses including APOBEC and homologous recombination repair deficiency, as well as gene expression profiling to assess immune-related signatures and tumor microenvironment are underway. Conclusions: TMB-H breast cancers contain a unique genomic profile enriched with targetable mutations such as PIK3CA, ARID1A, NF1, PTEN, ERBB2, and PALB2. Concurrent predictive biomarkers of response to immune checkpoint inhibition such as MSI-H and PDL-1 positivity are also more prevalent in TMB-H MBC. These findings suggest novel combination strategies within TMB-H MBC could be explored.


2021 ◽  
Author(s):  
Sneha Vivekanandhan ◽  
Justyna Trynda ◽  
Laura A. Marlow ◽  
Barath shreeder ◽  
James L. Miller ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260124
Author(s):  
Elizabeth P. Darga ◽  
Emily M. Dolce ◽  
Fang Fang ◽  
Kelley M. Kidwell ◽  
Christina L. Gersch ◽  
...  

Background Immune checkpoint inhibition is effective in several cancers. Expression of programmed death-ligand 1 (PD-L1) on circulating tumor or immune effector cells could provide insights into selection of patients for immune checkpoint inhibition. Methods Whole blood was collected at serial timepoints from metastatic breast cancer patients and healthy donors for circulating tumor cell (CTC) and platelet PD-L1 analysis with a phycoerythrin-labeled anti-human PD-L1 monoclonal antibody (Biolegend clone 29E.2A3) using the CellSearch® assay. CTC PD-L1 was considered positive if detected on at least 1% of the cells; platelet PD-L1 was considered positive if ≥100 platelets per CellSearch frame expressed PD-L1. Results A total of 207 specimens from 124 metastatic breast cancer patients were collected. 52/124 (42%) samples at timepoint-1 (at or close to time of progressive disease) had ≥5 CTC/7.5ml whole blood. Of those, 21 (40%) had positive CTC PD-L1. In addition, platelet PD-L1 expression was observed in 35/124 (28%) at timepoint-1. Platelet PD-L1 was not detected in more than 70 specimens from 12 healthy donors. Platelet PD-L1 was associated with ≥5 CTC/7.5ml whole blood (p = 0.0002), less likely in patients with higher red blood cell counts (OR = 0.72, p<0.001) and a history of smoking tobacco (OR = 0.76, p<0.001). Platelet PD-L1 staining was not associated with tumor marker status, recent procedures or treatments, platelet-affecting drugs, or CTC PD-L1 expression. Conclusion PD-L1 expression was found in metastatic breast cancer patients on both CTC and platelets in an independent fashion. Inter-patient platelet PD-L1 expression was highly heterogeneous suggesting that it is a biological event associated with cancer in some but not all patients. Taken together, our data suggest that CTC and platelet PD-L1 expression could play a role in predicting which patients should receive immune checkpoint inhibition and as a pharmacodynamics biomarker during treatment.


Sign in / Sign up

Export Citation Format

Share Document