Abstract A2-32: Identification of withaferin A as a novel cancer stem cell inhibitor to overcome drug resistance in non-small cell lung carcinoma

Author(s):  
Tai-shan Cheng ◽  
Yu-Chen Tsai ◽  
Alexander T. H. Wu ◽  
Peter M. H. Chang ◽  
Wei-Hsiang Hsu ◽  
...  
2014 ◽  
Vol 20 (2 Supplement) ◽  
pp. B30-B30 ◽  
Author(s):  
Katarzyna Wnuk-Lipinska ◽  
Gro Gausdal ◽  
Tone Sandal ◽  
Robin Frink ◽  
Stefan Hinz ◽  
...  

Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Shuang Lin ◽  
Rui Zhang ◽  
Xiaoxia An ◽  
Zhoubin Li ◽  
Cheng Fang ◽  
...  

Abstract Many studies have indicated that the aberrant expression of long noncoding RNAs (lncRNAs) is responsible for drug resistance, which represents a substantial obstacle for cancer therapy. In the present study, we aimed to investigate the role of the lncRNA HOXA-AS3 in drug resistance and elucidate its underlying mechanisms in non-small-cell lung carcinoma (NSCLC) cells. The role of HOXA-AS3 in drug resistance was demonstrated by the cell counting kit-8 assay (CCK-8), ethynyldeoxyuridine (EDU) assay, and flow cytometry analysis. Tumor xenografts in nude mice were established to evaluate the antitumor effects of HOXA-AS3 knockdown in vivo. Western blotting and quantitative real-time PCR were used to evaluate protein and RNA expression. RNA pull-down assays, mass spectrometry, and RNA immunoprecipitation were performed to confirm the molecular mechanism of HOXA-AS3 in the cisplatin resistance of NSCLC cells. We found that HOXA-AS3 levels increased with cisplatin treatment and knockdown of HOXA-AS3 enhance the efficacy of cisplatin in vitro and in vivo. Mechanistic investigations showed that HOXA-AS3 conferred cisplatin resistance by down-regulating homeobox A3 (HOXA3) expression. Moreover, HOXA-AS3 was demonstrated to interact with both the mRNA and protein forms of HOXA3. In addition, HOXA3 knockdown increased cisplatin resistance and induced epithelial-mesenchymal transition (EMT). Taken together, our findings suggested that additional research into HOXA-AS3 might provide a better understanding of the mechanisms of drug resistance and promote the development of a novel and efficient strategy to treat NSCLC.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Yuanyuan Ma ◽  
Xiaodan Yang ◽  
Wei Zhao ◽  
Yue Yang ◽  
Zhiqian Zhang

AbstractIt is hypothesized that tumor-initiating cells (TICs) with stem cell-like properties constitute a sustaining force to drive tumor growth and renew fully established malignancy. However, the identification of such a population in non-small cell lung carcinoma (NSCLC) has been hindered by the lacking of reliable surface markers, and very few of the currently available surface markers are of functional significance. Here, we demonstrate that a subpopulation of TICs could be specifically defined by the voltage-gated calcium channel α2δ1 subunit from non-small cell lung carcinoma (NSCLC) cell lines and clinical specimens. The α2δ1+ NSCLC TICs are refractory to conventional chemotherapy, and own stem cell-like properties such as self-renewal, and the ability to generate heterogeneous tumors in NOD/SCID mice. Moreover, α2δ1+ NSCLC cells are more enriched for TICs than CD133+, or CD166+ cells. Interestingly, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx into cells, which subsequently activate Calcineurin/NFATc2 signaling that directly activates the expression of NOTCH3, ABCG2. Importantly, a specific antibody against α2δ1 has remarkably therapeutic effects on NSCLC xenografts by eradicating TICs. Hence, targeting α2δ1 to prevent calcium influx provides a novel strategy for targeted therapy against TICs of NSCLC.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 224 ◽  
Author(s):  
Win Sen Heng ◽  
Shiau-Chuen Cheah

Plant secondary metabolites have been seen as alternatives to seeking new medicines for treating various diseases. Phytochemical scientists remain hopeful that compounds isolated from natural sources could help alleviate the leading problem in oncology—the lung malignancy that kills an estimated two million people annually. In the present study, we characterized a medicinal compound benzophenanthridine alkaloid, called chelerythrine chloride for its anti-tumorigenic activities. Cell viability assays confirmed its cytotoxicity and anti-proliferative activity in non-small cell lung carcinoma (NSCLC) cell lines. Immunofluorescence staining of β-catenin revealed that there was a reduction of nuclear content as well as overall cellular content of β-catenin after treating NCI-H1703 with chelerythrine chloride. In functional characterizations, we observed favorable inhibitory activities of chelerythrine chloride in cancer stem cell (CSC) properties, which include soft agar colony-forming, migration, invasion, and spheroid forming abilities. Interesting observations in chelerythrine chloride treatment noted that its action abides to certain concentration-specific-targeting behavior in modulating β-catenin expression and apoptotic cell death. The downregulation of β-catenin implicates the downregulation of CSC transcription factors like SOX2 and MYC. In conclusion, chelerythrine chloride has the potential to mitigate cancer growth due to inhibitory actions toward the tumorigenic activity of CSC in lung cancer and it can be flexibly adjusted according to concentration to modulate specific targeting in different cell lines.


Sign in / Sign up

Export Citation Format

Share Document