scholarly journals Momordica Charantia Lectin, a Type II Ribosome Inactivating Protein, Exhibits Antitumor Activity toward Human Nasopharyngeal Carcinoma Cells In Vitro and In Vivo

2011 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
E. F. Fang ◽  
C. Z. Y. Zhang ◽  
T. B. Ng ◽  
J. H. Wong ◽  
W. L. Pan ◽  
...  
2019 ◽  
Vol 10 (27) ◽  
pp. 6925-6932 ◽  
Author(s):  
Yuanji Xu ◽  
Jiling Wang ◽  
Shaoli Cai ◽  
Guanghao Chen ◽  
Nanyang Xiao ◽  
...  

2010 ◽  
Vol 297 (2) ◽  
pp. 190-197 ◽  
Author(s):  
Zizhen Feng ◽  
Shuangbing Xu ◽  
Mengzhong Liu ◽  
Yi-Xin Zeng ◽  
Tiebang Kang

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Ying-Ying Liang ◽  
Xu-Bin Deng ◽  
Xian-Tao Lin ◽  
Li-Li Jiang ◽  
Xiao-Ting Huang ◽  
...  

Abstract Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC.


2018 ◽  
Vol Volume 10 ◽  
pp. 5471-5477 ◽  
Author(s):  
Lin Peng ◽  
Yi-Teng Huang ◽  
Jian Chen ◽  
Yi-Xuan Zhuang ◽  
Fan Zhang ◽  
...  

2021 ◽  
Author(s):  
Andjela Franich ◽  
◽  
Milica Dimitrijević Stojanović ◽  
Snežana Rajković ◽  
Marina Jovanović ◽  
...  

Four Pt(II) complexes of the general formula [Pt(L)(5,6-epoxy-1,10-phen)], where L is anion of malonic (mal, Pt1), 2-methylmalonic (Me-mal, Pt2), 2,2-dimethylmalonic (Me2-mal, Pt3) or 1,1- cyclobutanedicarboxylic (CBDCA, Pt4) acid while 5,6-epoxy-1,10-phen is bidentately coordinated 5,6-epoxy-5,6-dihydro-1,10-phenanthroline were synthesized and characterized by elemental microanalysis, IR, UV-Vis and NMR (1H and 13C) spectroscopic techniques. In vitro anticancer activity of novel platinum(II) complexes have been investigated on human and murine cancer cell lines, as well as normal murine cell line by MTT assay. The obtained results indicate that studied platinum(II) complexes exhibited strong cytotoxic activity against murine breast carcinoma cells (4T1), human (HCT116) and murine (CT26) colorectal carcinoma cells. Complex Pt3 display stronger selectivity toward carcinoma cells in comparison to other tested platinum(II) complexes exhibiting beneficial antitumor activity mainly via the induction of apoptosis, as well as inhibition of cell proliferation and migration. Further study showed that Pt3 complex also carry significant in vivo antitumor activity in orthotopical 4T1 tumor model without detected liver, kidney, lung, and heart toxicity. All results imply that these novel platinum(II) complexes have a good anti-tumor effect on breast and colorectal cancer in vivo and in vitro and the affinity to become possible candidates for treatment in anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document